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Abstract

Neuromodulation has been implicated in the induction and modu-
lation of synaptic plasticity, and thus provides a potential vehicle for local
reinforcement learning within a defined neural network. Specifically, the
neuromodulator dopamine has been shown to encode reward-prediction
error, the amount that an agent’s received reward deviates from its ex-
pected reward. Furthermore, dopamine has been demonstrated to mod-
ulate synaptic plasticity based on novelty or uncertainty. Additional evi-
dence exists supporting the parallel role of acetylcholine in the induction
of plasticity via a gating mechanism, as well as the modulation of learn-
ing rates within discrete neural networks. We endeavor to understand the
calculus underlying these interactions, and propose the possibility that
neuromodulators act combinatorially to modulate synaptic plasticity. We
evaluate the validity of our model with respect to parameters such as re-
ward prediction error encoding, learning rate, and inducibility to spiking,
conditioned on single layer neural networks with a bipartite graph connec-
tivity scheme. Within this model we contrast the results of combinatorial
modulation with that of classical reward-based training on canonical rein-
forcement learning tasks. We hope to extend our investigation by further
quantifying the effect of potentially correlated activity amongst the stated
parameters, particularly regarding task performance. Through iterative
regression on the linearly separable as well as the nonlinear interactions of
these neuromodulators, we ultimately hope to gain a more complete un-
derstanding of their collective dynamics and interactions as well as their
evoked synaptic changes underlying reinforcement learning.

1 Introduction
The operant study of behaving animals under scheduled stimuli has long

been a mainstay in the investigation of animal cognition. In these experiments,
as an animal performs a desired action in response to a stimulus, it begins to
learn and understand the relationship between the stimulus, its response, and
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the reward. As it does so, it changes its behavior, re-orienting its attention in or-
der to gain further reward [1]. This observation—that animals alter behavior to
maximize their reward—has been fundamental to the study of animal cognition.
The stimulus-response-reward dynamic can be recapitulated at the synaptic
level, wherein repetitive stimulation of the postsynaptic neuron programmat-
ically changes its activity, in turn causing the rewarded action—postsynaptic
spiking—to become more or less likely [2]. Since this discovery, the algorithms
with which an agent seeks to maximize reward, collectively called reinforcement
learning (RL), have been iteratively examined at increasingly exacting levels of
analysis, from the behavioral to the cellular.

Within a neuron, the RL is thought to be manifested via plasticity, i.e.,
the dynamic facilitation of synaptic activity by prior stimulation [2]. In this
regime, activity within a synapse directly leads to the promotion of synaptic
participators, the recruitment of which in turn leading to increased activity.
As this learning paradigm occurs without regards to an overarching or known
trajectory, it is an unsupervised learning rule, a learning rule that requires
no known target, or error therefrom [3]. Classical experiments in synaptic long-
term depression (LTD) and potentiation (LTP) and have typically characterized
local synaptic potentiation as a weighted function of the presynaptic and the
postsynaptic activity in the form of rate-dependent or spike-timing-dependent
plasticity (STDP). Learning via STDP depends upon drawing inferences from
the relative timing of the presynaptic and postsynaptic spikes [4, 5]. However,
our increasing understanding of RL has brought with it the caveat that, in these
models, full recapitulation of in vivo learning rules require more than the partic-
ipation of local dynamics –the important modulatory role of neurotransmitters
must be acknowledged.

The predominating neuromodulators in the central nervous system in-
clude dopamine (DA), acetylcholine (ACh), serotonin (5-HT), and norepinephrine
(NE). As their name suggests, they modulate the synaptic activity of their
target neurons, and are characteristically spatially and temporally distributed
throughout the brain and its corresponding circuits [3]. The richness of under-
standing regarding their spatiotemporal localization and downstream behavioral
effects has provided an exciting basis for the idea that, more than simply modu-
lating arousal, these neuromodulators specifically and precisely regulate global
dynamics via the implementation of identifiable distributed learning modules
in the brain. Numerous studies have proposed that because these neurotrans-
mitters have been shown to modulate STDP, they may thus serve as a basis
for a computational theory underlying reinforcement learning and acquisition
of goal-directed behaviors [2, 6]. As such, the present study contributes to the
growing body of research that seeks to better characterize the complex role of
neuromodulatory networks in generating and influencing learned reward-seeking
and goal-directed behaviors.

A number of theoretical studies have investigated the hypothesis that
reward-modulated STDP could be the neuronal basis for reward learning [6,
7, 8]. Within these models, DA represents the global learning signal for pre-
diction of rewards, and ultimately, the reinforcement of behavior. Additionally,
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ACh regulates the balance between memory storage and renewal, thus indirectly
encoding the bases for saliency and novelty, and in ultimately informing our un-
derstanding of attention [9]. It is thought to regulate the degree with which we
differentially weight our short-term and long-term predictions of reward, with
long-term expectations of reward typically being reduced in a process known as
temporal discounting.

In this study, we investigate possible consequences of linear and nonlin-
ear interactions of the neuromodulators DA and ACh, which encode our meta-
parameters of interest. Ultimately, we hope to gain a more complete under-
standing of whether and how neuromodulators may interact to more effectively
govern the synaptic changes underlying reinforcement learning.

Dopamine has long been thought to encode a reward-prediction error
which could be used to modulate synaptic plasticity based on novelty or surprise
[10, 11]. Additionally, some evidence exists supporting the hypotheses that both
DA and ACh play a role in inducing plasticity (via a gating mechanism), and
modulating the learning rate of neural networks [8, 11]. Therefore, it is possible
that the neuromodulators act in a combinatorial fashion to modulate synaptic
plasticity.

By adding additional meta-parameters to encode the reward-prediction
error (RPE), learning rate, and inducibility to a spiking neural network with
random connectivity, we can compare how this combinatorial modulation com-
pares to more classical reward-based networks on classical reinforcement learn-
ing tasks. We also hope to extend our investigation to include the effect of
how correlated activity among meta-parameters affects task performance. This
would be a method of studying possible consequences of linear and nonlinear
interactions of the neuromodulators encoding these meta-parameters.

2 Methods
In the following, the network model, task, calculation of reward, and reward-

modulation of STDP is based on the work of Fremaux et al. (2010).

2.1 Neuron Model & Network Architecture
Each network was modeled as a fully connected bipartite graph with 50

input nodes and 5 output nodes. The inputs were given by independent Poisson
processes with a 10 Hz firing rate. The outputs were modeled as point neurons
governed by a Spike-Response Model (SRM) (1-3), where Vthreshold = 16 mV ,
τm = 20 ms, τs = 5 ms, ∆V = 1 mV , and Vreset = −5 mV . Additionally, for
each output neuron the membrane potential was used to approximate the in-
stantaneous firing rate of the SRM neuron according to (4), where ρ0 = 60 Hz.
The instantaneous firing rate could then be used as the rate parameter for an
inhomogeneous Poisson process that determined the spike-train of the output
neuron. This last step was done to ensure an element of stochasticity was
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Figure 1: The model network. The (sum of) the corresponding post-synaptic
output spike trains are compared with the (sum of) the 5 target trains, the
difference of which yields a neuron specific estimate of the reward Ri

n. The
summation of Ri

n with respect to each neuron Ni yields the global reward for
the network, per trial.

present, so that each trial could be considered independent.

τm
dV

dt
= K − V + g

Upon spiking, V,K → Vreset

Upon receiving a spike from neuron i, g → g + wi.

(1)

τs
dg

dt
= −g (2)

τm
dK

dt
= −K (3)

ρ = ρ0e
V−Vthreshold

∆V (4)

Plasticity Model
Plasticity in the model was governed according to the STDP rule (6) pre-

sented in Song & Abbott (2001), and used to update an eligibility trace accord-
ing to (5), where τe = 500 ms, A+ = 0.188 mV , A− = −0.094 mV , τ+ = 20 ms,
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τ− = 40 ms, and ∆t = tpost− tpre (the times of the postsynaptic and presynap-
tic spikes). Additionally, η is a parameter that modulates the learning rate, and
was used to model the effect of ACh. At the beginning of training η = 1; it is
decremented by 0.005 on every subsequent trial (during the simulations wherein
only DA modulation was modeled, η was held constant at 1).

τe
deij
dt

= −eij + ηSTDP (5)

STDP =

{
A+e

∆t
τ+ if∆t ≥ 0

A−e
∆t
τ− else

(6)

2.2 Spike-time learning task
Every repeated simulation consisted of a consecutive series of 250 trials

of 1 second duration. For each trial, the input layer neurons were presnted
with predetermined input spike-trains generated from inhomogenous Poisson
processes. The reward contribution from each synapse was calculated as in (7),
where Ni and Ni∗ are the current and target spike counts respectively. The local
contributions were then averaged as in (8), where N is the number of output
neurons, in order to attain a global reward, and ensure that the network is not
implementing supervised learning. Additionally, a running average of this global
reward was calculated as in (9) to use as a baseline value for DA signaling. The
reward signal S(Rn), was then computed as in (10), and could be thought of as
representing phasic DA signaling. The reward signal was presented at the end of
each trial, and caused a change in the synaptic weights according to (11), which
were constrained to range between 0 and 1. Following each trial the eligibility
traces were set to 0 to simulate long intervals between trials.

Ri
n = abs(Ni −Ni∗)/max(Ni −Ni∗) (7)

Rn = (
1

N

∑
i

Ri
n) (8)

Rn+1 = Rn +
Rn −Rn

N
(9)

S(Rn) = Rn −Rn (10)
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∆wij = S(Rn)eij(T ) (11)

As determined by the value of the delivered reward, the network updates its
synaptic weights accordingly at the end of each trial where time = T , and i and
j are specific to the input and output neurons, respectively.

To generate the input spike-trains, target spike counts, and target synap-
tic weights, the synaptic weights were randomly set and Poisson input was gen-
erated. These input spike-trains were saved to become the input stimulus for
subsequent trials, the synaptic weights were saved to become the target weights,
and the spike-trains produced by the output neurons was used to calculate the
target spike counts. This was done to ensure that the target output would be
learnable by the network.

3 Results
Grossly, our results validated our basic expectations: that is, a spike-time

dependent learning network, under a reward- and/or novelty- modulated synap-
tic learning rule, can succeed in the semi-supervised learning of a given task;
in this case a target spike train generated from feeding a fixed input to a ref-
erence network. In repeated simulations, the dynamics of reward-modulated
(Dopamine) and reward-and-novelty (Dopamine & Acetylcholine) modulated
learning showed a consistent statistically significant difference over the course
of the learning trials(p = 0.0494, repeated paired two-sample t test) (Fig. 2).
This indicates that these networks employed distinct stratagems to solve the
same problem. However, several results were surprising, and contravened our
prior expectations.

Namely, we expected a gross decrease in the rate of convergence of the
dual Dopamine & Acetylcholine network in comparison to the Dopamine-only
network, coupled with an increased variance in the convergence of the Dopamine,
reward-modulated network. These expectations were directly in line with our
prior understanding of the cholinergic neuromodulation of novel stimuli. We
predicted that cholinergic modulation—as modeled here by a decreased learn-
ing rate η, would in turn decrease the rate of convergence by directly decreasing
the magnitudes of the trial-to-trial candidate weight changes eij . Additionally,
we predicted that with more stable exploration of the solution space, the dual
Dopamine & Acetylcholine network would converge, albeit slowly, to asymp-
totically higher rewards. This was not the case. Curiously, pure reward-based
Dopamine modulation demonstrated consistently higher terminal rewards (Fig ),
and thus consistently closer targeting, than its dual-regime Dopamine & Acetyl-
choline counterpart. In the latter, simultaneous regulation of learning by both
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Figure 2: Average reward over trials. Learning curve of the mean evolution
of the trial-average reward during repeated episodes of learning (n = 5), under
either reward-based (Dopamine) or reward-and-novelty (Dopamine & Acetyl-
choline) based modulation. Strict reward-based modulation (Dopamine) results
in consistently and significantly higher rewards (p = 0.0494, repeated paired
two-sample t test).
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Figure 3: Reward Prediction Error. The difference between the actually
delivered reward and the reward prediction for the stimulus. Corresponds to
the convergence of an unsupervised network to a learned task.

reward and novelty lead to surprisingly poorer targeting, and lower reward. The
reward prediction error (RPE) within both conditions nevertheless vanished to
zero (Fig. 3), critically indicating that both regimes, the network successfully
learned the task.

4 Discussion
The focus of our study was a biologically-grounded evaluation of a generic

class of synaptic learning rules, under two sources of regulation: reward-modulated
(R-STDP) and reward & novelty-modulated learning (RN-STDP). In either
case, the fundamental paradigm was to elaborate upon an underlying unsu-
pervised Hebbian learning rule, STDP, in the learning of a spike-rate based
task-pattern. In the purely reward-modulated case, the time-dependent signal
S(R) is a monotonic function of the understood reward R. In a learning regime
modulated by both reward and novelty however; S is a function of both, with the
latter implicitly encoded by changes in the learning rate. The learning rate, η
controls the speed of learning, and in our simplified model, novelty-modulation
was represented by the exponential attenuation of this rate over trials.

First we explain the discrepancies outlined in the results in several ways.
We believe that for RN-STDP, the faster convergence to a lower-rewarding state
is indicative of asymptotic residency in a local maximum. That is to say, it
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(a) Kullback-Leibler Divergence (b) Mean Squared Error from Target

Figure 4: Kullback-Leibler Divergence and Mean Squared Error from
target. A. KL Divergence of the Dopamine & Dopamine + Acetylcholine
learned network weights from target weights, during a learning session. The KL
divergence is a constrained measure of the difference of the implicit probabil-
ity distributions governing the profiles of synaptic weights. Strict reward-based
modulation leads to significance divergence of the network from the target dis-
tribution of weights, along with trial-to-trial instability. In contrast, combined
modulation shows both remarkably attenuated network divergence, along with
a corresponding stability of the synaptic weights. B. MSE Like the K-L, the
MSE is a quantatitive measure of the difference between two sets of synaptic
weights. In that vein, reward-modulated Dopamine show consistent divergence
and instability in network weights as compared to combined modulation.
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appears that the RN-STDP network converges rapidly, but not optimally, to a
locally maximal and stable value. In retrospect, this still coheres with our model
of ACh as a modifier of the learning rate: for in our simulations, we presented
identical stimuli to a learning network over the course of 250 trials. In this
regime, successive re-presentation of the same stimulus is intuitively expected
to transmit increasingly diminishing information to the network. In this context,
one would expect a relative decrement in the ceiling of maximal possible reward,
as the network receives diminished returns with each successive stimulus. In
contrast, preservation of the learning dynamics in R-STDP leads to persistent
and robust exploration of the solution space, as stimulus re-presentation without
a decaying learning rate is sufficient to allow the network to dynamically escape
local minima and explore alternative solutions. This is in turn reflected by
decreased stability and increased ringing of the R-STDP network around the
determined reward, especially in comparison to that of the RN-STDP network
(Fig).

However, with R-STDP, consistent overshooting and undershooting of
the predicted reward (due to a preserved η), allows for greater average reward
over time for the Dopamine network relative to the Dopamine & Acetylcholine
network. The explanation, faster convergence of acetylcholine-modulated net-
works to stable but lower maxima, is further illustrated by the quantification of
the trial-to-trial differences of the synaptic weights of the two networks. Both
the Kullback–Leibler (K-L) divergence, as well as computation of the relative
mean squared error (MSE) were employed to measure this. The latter met-
ric more precisely measures the distance of a single synapse from its target,
as opposed to the K-L, which is an aggregate measure of the mutual informa-
tion between the target weights and the learned distribution of weights, from
trial to trial. Both approaches demonstrate that the final distribution of synap-
tic weights of the RN-STDP network more closely resemble that of the target
network, in addition to further illustrating the notable trial-to-trial stability
in its learned weights. In contrast, the R-STDP network demonstrates consis-
tently higher divergence of its synaptic profile with that of the target weights,
with visible, persistent volatility. Indeed, the striking divergence of the final
distribution of weights of the Dopamine network with that of the target indi-
cates that the Dopamine network found a solution quite distinct—in synaptic
weight-space—from the target weights. Overall, we posit that it is precisely this
decreased stochasticity in the RN-STDP network that prevents it from robustly
exploring far-flung distributions.

Altogether, our studies highlighted several key results. Firstly, it il-
lustrated that these highly expressive neural networks are indeed functionally
redundant, with the dynamics of the R-STDP network indicating that a neu-
ral network is capable of producing congruent outputs from dissimilar synaptic
weight distributions. Our work also revealed that novelty, as represented here,
is a double-edged sword. That is to say, decreased novelty appears to prevent
robust exploration but increase stability. A jocund anthropomorphic interpre-
tation of our observations is that during a simulation, the R-STDP network
‘fixates’ on obtaining more reward, accepting any and all stimuli as salient,
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while the RN-STDP network becomes ‘bored’, settling on a satisfactory network
state, lacking the motivation to explore more ‘creative’ solutions. However, the
biological and physiological processes underlying our observed results remain to
be explored.

5 Future Aims
Our investigation has proffered preliminary promising results on the role of

cholinergic learning-rate modulation in reward-modulated reinforcement learn-
ing. In particular, it revealed that the overt behavioral phenotypes that in-
form how we learn from novel stimuli may be reproducible at the cellular scale.
Namely, acquisition of goal-directed behaviors through reward-based reinforce-
ment is reflected in synaptic dynamics, and allows for mechanistic explanation
of learnability of reward-modulated and novelty-modulated tasks. However, as
our prior discussion highlighted, a more biophysically relevant model is neces-
sary for the sophisticated elucidation of learning programs not reproducible by
STDP or unsupervised RL alone, such as non-local dynamics believed to gov-
erned by neurotransmitter neuromodulation. For example, the crude approach
with which we model novelty prevents the extrication of network cholinergic
dynamics from that of the learning rate, thus precluding us from potentially un-
derstanding the nature of their underlying correlation. One possible workaround
would be to model directly model increase in acetylcholine concentration, e.g.
by an increase in K+ leak channel and AMPA conductance, as has been previ-
ously demonstrated experimentally. In addition, significant modification of the
schedule of stimulus presentation is likely warranted, as our current pattern of
input currently constrains to us the investigation of non-novelty, as that is the
only reasonable interpretation one can make with our current design, founded
on the continued re-presentation of identical input. Potential solutions include
interleaving the relevant stimulus with random stimuli, as well as simultaneously
training to multiple targets, which would help abrogate the linear dependence
of novelty with the number of trials.

The last of our immediate aims is to develop more sophisticated reward
criteria in our pooled estimation of the global reward. Currently, the model only
considers the firing rate, averaged and evaluated over a single 1s trial. However,
a criterion that better takes the effects of spike-timing on reward estimation is
needed, as our method fails to register the relative pre- and post-synaptic spike-
timing. Intra-trial correlation of spike-times allows for the more robust causal
transduction of pre-synaptic firing patterns, and thus, overall network compu-
tation. In addition, the method with which dopaminergic neurons may actually
calculate the stimulus-specific RPE (ssRPE)—and thus relevant candidates for
the success signal—remains unknown. The lack of an endogenous mechanism
for the ssRPE is a major obstacle to the in vivo validation of reward-modulated
STDP. This internal reward predictor, termed a critic, is required for the solu-
tion of the aforementioned credit-assignment problem of local rewards, and in
turn, the computation of a global reward. In this model, the critic learns the
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state value function, and the actor—i.e. the network—uses this knowledge to
learn how to respond, i.e., it learn the policy. However, the biological modes of
computation with which this is endogenously achieved remain to be elucidated.
An implicit corollary to this statement is that RN-STDP, as elaborated here,
will never fully reproduce learning as seen in vivo, as the brain demonstrates
a robust capacity for learning early in development, and in spite of an iden-
tifiable critic. Solutions to this problem include the use of an alternative rule
to train the critic, prior to STDP. Other work has established the feasibility of
separately training a critic to recognize and evaluate errors. Antecedent boot-
strapping mechanisms that could implement such critic potentially include pure
temporal difference learning, where adjacent states are assumed to be entirely
consistent from trial-to-trial, and thus any deviation from this constraint allows
for the computation of an error from that expectation. This error signal in
turn allows the critic to learn the state value function for the network, and thus
internally estimate anticipated reward.

Future models will invariably demand even more sophistication in or-
der to more rigorously emulate STDP, in particular the multiplicative non-
linearities seen in studies investigating in vivo R-STDP facilitation. Namely,
endogenous activation of D2 receptors, through independent activity, may dif-
ferentially influence the expression and time course of spike-timing-dependent
LTP and LTD. This disruption in the global registration of relative spike-times
in turn prevents the canonical temporal decomposition of STDP as a succes-
sive sequence of multiplicative scaling events. Even more intriguingly, other
studies have demonstrated that in some contexts, such as in the mammalian
hippocampus, local increases in dopamine concentration may reverse the very
paradigm of spike-time learning entirely, with the LTD component of STDP
converted to LTP, while LTP, though remaining remaining facilitatory, becomes
differentially timed with respect to its spike-time pre-post thresholds [5, 12].
Altogether, the robust elucidation of neuromodulator dynamics will likely de-
mand models of iteratively increasing complexity, but in turn will allow us to
better understand the extent to which the fundamental process that is learning
is ultimately reducible.
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