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Abstract 6 

Recent publications on neural networks on VLSI chips show various 7 
neuromorphic circuits featuring spike-time-dependent (STDP) plasticity. These 8 
circuits are built in both analog and mixed-domain fashions: sophisticated 9 
transistor level circuits, synaptic weights memory look-up tables, digital 10 
counters etc. A lot of advancements have been made to mimic the neural 11 
networks with the highest number of neurons and interconnecting synapses. The 12 
techniques include minimization of the circuit topologies and maximization of 13 
energy efficiency.  HP Lab’s discovery of novel memristive elements resulted in 14 
very compact and energy efficient memristive synapse implementations. The 15 
paper introduces conceptual STPD circuit implementations in neural VLSI 16 
chips, then develops mathematical foundations of novel memristive synapse and 17 
provides simulation results and discussion. 18 

 19 

1 Classical  neuromorphic circuits  with spike -time-20 

dependent plastici ty.  21 

 22 

1 .1  Neuro n  i mp le me nta t io n  in  V LS I  ch ip s  23 

The classical way to implement the spiking behavior of neurons similar to those seen in 24 
mammalian brains is to use a leaky integrate and fire model demonstrated in Figure 1 as 25 
described in [1] and later generalized to a non-linear form with various peaking waveforms 26 
[2]. 27 

 28 
Figure 1. Leaky integrate and fire (I&F) neuron [1] 29 

Current I(t) charges the capacitance C in the RC tank biased at the voltage, corresponding to the 30 

K/Cl ionic resting potentials. The comparator-switch represented by a block v compares the 31 

potential on the capacitor and triggers rapid discharge through a switch as soon as the threshold is 32 

reached. Typical waveforms are shown in Figure 2 below. 33 
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Figure 2. Typical waveforms [2] present in the leaky integrate and fire neurons. a) shows the potential 

across the capaciatence as the input current is integrated and switch activated after the threshold. b) 

demonstrates the spiking frequency dependancy on the input current and c) shows the effects of time-varying 

feed current. 

 34 

1 .2   Sp i ke  t i me -de pende nt  p la s t i c i ty  (STDP)  35 

The primary mechanism of learning in neural networks is due to synaptic structure 36 
adaptations. Spike time-dependent plasticity is one of the mechanisms that changes the 37 
conductance level of the synaptic strengths depending on the relative timing of the pre and 38 
post neurons. Effectively, STDP creates a path of the strong stimuli to propagate through the 39 
neural network. STPD can be seen as an extension of the Hebbian learning rule that 40 
postulates that the synapse is strengthened if there is a causal relationship between firing of 41 
two neurons. Hebb’s model does not take into account the synaptic weakening that was 42 
postulated by Stent. The combination of the strengthening and the weakening within the 43 
short time frame with accordance with specific rules (see [1]) is what is usually referred as 44 
STDP. 45 
 46 

1 .3   Neuro mo rph ic  c i rcu i t s  f ea tur ing  STDP  47 

There are multiple levels of abstractions that can be applied to neuromorphic circuits, 48 

depending on the scale of implementation: program architecture level, where the neurons are 49 

described in software on a fixed hardware, hardware architecture level, where the neurons 50 

are comprised of the fixed circuit elements and reconfiguration happens on the wiring level 51 

of the components, and finally, electronic component level, where the plasticity and 52 

adaptation are implemented as a physical change occurring inside of the nano-scale devices. 53 

As the transition goes to lower levels, it generally is associated with more dense systems 54 

with smaller sized neurons and synapes, and featuring lower power operation and dissipation 55 

and overall greater efficiency.  56 

 57 

Recent trends in miniaturizing consumer electronics (wearable and mobile devices) as well 58 

as race for the efficiency in data centers and other corporate infrastructures while increasing 59 

the computational and intelligence levels can benefit from ultra-dense neuromorphic circuits. 60 

This means that innovation in electronic component level is one of the driving factors in 61 

enabling the future generations of smart devices. 62 

 63 

2 Memristive i mplementation  of  network synapses  64 

The memristive element first introduced in 1971 by Leon Chua as a predicted fourth 65 
elementary component relating flux and charge and later generalized to mathematical state 66 
variable definition is governed by the following equations: 67 

𝑉 = 𝑅(𝑥, 𝑖) ∙ 𝑖 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑖) 

For more details on the definition of memristive devices see [3]. 68 



The key takeaway extracted from the model above can be condensed to two memristor 69 
“fingerprints”:  70 

1. The hysteresis loop on the I-V characteristic plot will always include the point (0,0) 71 
(and is referred as pinched hysteresis loop). 72 

2. The area enclosed in the loop decreases as the excitation frequency increases.  73 

 74 

2 .1  M emri s to r dev ice  d i sc o v ery  75 

In 2008 HP Labs have successfully fabricated the device that features memristive properties.  76 

 77 
Figure 3. Memristor discovered in HP Labs 78 

The undoped region is made of Tinanium Dioxide (good insulator), and the doped region is 79 
the oxidized Titanium Dioxide (becomes a semiconductor). When the voltage is applied 80 
across the device, the boundary between the doped and undoped region shifts, and if no 81 
voltage is present then the boundary will effectively stay at the same level. To understand 82 
how the device above works let’s take a look at the governing equations:  83 

𝑅𝑚𝑒𝑚 = 𝑅𝑂𝑁 ∙ 𝑥 + 𝑅𝑂𝐹𝐹 ∙ (1 − 𝑥) 

The resistance seen across the memristor consists of the resistance of the ON semiconductive 84 
doped region and OFF undoped isolator. 85 

𝑑𝑥

𝑑𝑡
= 𝑘 ∙ 𝑖(𝑡) ∙ 𝑓(𝑥) 

𝑘 =  
𝜇𝑣 ∙ 𝑅𝑂𝑁

𝐷2
 

The dynamics of the boundary x depends on the k-factor describing the mobility of the 86 
dopant and the non-linear dopant drift f(x). 87 

𝑓(𝑥) = 1 − (2𝑥 − 1)2𝑝 

The non-linear drift is caused by the potential difference across the terminals that create 88 
significant E-field in the device due to the nano-scale distances beween the ports. It is also 89 
referred as a window finction and should include the boundary drift lower and upper bounds 90 
(the boundary of doped and undoped region cannot cross the boundaries of the device itself). 91 
The f(x) proposed above satisfies these conditions for any positive value p.  92 

 93 

2 .2  M emri s t o r mo de l  in  S PICE  94 

LTSPICE IV is used as a primary SPICE simulator as free and reliable tool. Based on the 95 
memristor model dynamics introduced earlier the SPICE model is formulated after work 96 
published in 2009 [7]. The window function used is chosen to be after Joglekar09.  97 

To quickly verify the operation of the modelled device the fingerprint has been checked:  98 



 99 
Figure 4. Memristor SPICE model verification. 100 

The typical pinched hysteresis loop with the area dependent on the frequency of operation means 101 

the model is correct and the necessary adjustments can include the change of initial conditions. 102 

 103 

2 .3  M emri s t iv e  neuro mo rp hic  sy na p se  104 

With the working model developed for SPICE environment, the circuits that involve 105 
memristors are now convenient to simulate. There are several implementations of synapses 106 
that possess STDP and involve memristors. From the density and energy efficiency 107 
standpoints, the optimal configuration consists of just a single memristor. It can be 108 
manufactured in the nano-meter scale and does not require and biasing currents minimizing 109 
the leakage and dynamic power that are generally associated with more sophisticated 110 
circuits. 111 

 112 

 113 
Figure 5. Single memristor plastic synapse 114 

 115 

The single memristor synapses are usually arranged in the “crowbar” structures shown in the 116 

Figure 6 below.  117 

 118 
Figure 6. a) “crowbar” memristive-synaptic structure b) fabricated “crowbar” 119 



2 .4  S ing le  me mri s to r mo de l  v er i f i ca t io n  se tup  120 

Several assumptions regarding the spiking patters are made to simplify the simulation of the 121 

synaptic plasticity. Figure 7 shows the potentials of the pre-synaptic neuron and the post-122 

synaptic neurons along with the difference between the two that represents the net potential 123 

across the memristor. 124 

 125 

 126 
Figure 7. Voltage appearing across the memristor. Figure 2(a) corresponds to the potentiation scenario and 127 

Figure 2(b) corresponds to the weakening scenario. 128 

The waveforms chosen as the typically present in I&F type neurons. The voltage drop across the 129 

memristor can be simplified to the pulse. The width of the corresponding positive and negative 130 

pulses as shown on Figure 8 correspond to the relative arrival times of the spikes. The DC bias is 131 

optional and was included to mimic the real system with higher precision. 132 

 133 

 134 
Figure 8. Potential across the memristor for pre arriving first (on top) and last (on the bottom). 135 

In this work, only one type of time-dependent plasticity is considered. The recently published 136 

work [5] considers waveform shaping of the pre and post synaptic potentials to observe various 137 

behaviors of STDP. Their findings are summarized on figures 9 and 10 below. 138 

 139 

It is also important to note that the actual timings that are typically present in the biological 140 

systems are not of the most importance as long as the neural synapses are scaled to the 141 

corresponding time-frame. 142 

  143 



2 .5  S ing le  me mri s to r s y na pse  s i mu la t io n  res u l t s .  144 

 145 
Figure 9. Potentiation of the synaptic strength. Pre neuron spiking first. 146 

Firgure 9 shows the conductance in terms of the current due to the same excitation voltage. As 147 

seen on the plot, the green waveform (corresponding to the widest pulse width) shows the fastest 148 

rise in time. Smaller pulse widths experience less conductance improvements. Generally speaking, 149 

it is consistent with the classical SPDT model.  150 

 151 

 152 
Figure 10. Weakening of the synaptic strength due to post neuron firing first. 153 

Firgure 10 shows the conductance in terms of the current due to the same excitation voltage. As 154 

seen on the plot, the green waveform (corresponding to the narrowest pulse width) shows the 155 

slowest fall in time. Wider pulse widths experience more conductance weakening. Generally 156 

speaking, it is consistent with the classical SPDT model.  157 

 158 

The first order verification of the possibility of spike time-dependent plasticity is presented in 159 

Figures 7 and 8. It is not completely correct to assume that the pulses are always of the square 160 



shape as the shape will change significantly in the periods where relative timings are not as well 161 

timed. It is a crude approximation that had to be done to get the project completed within the given 162 

timeframe. 163 

 164 

3 Simulation results  and future considerations  165 

 166 

3 .1  S ing le  me mri s to r s y na pse  res u l t s  167 

The simulations show that single memristor synapse possesses spike time-dependent 168 

characteristics and has potential in realizing neuromorphic circuits. 169 

 170 

While preparing this paper another resent research results [5] were found where the researches 171 

have used an extended approach to the potential reconstruction across the memristive synapse. The 172 

key implementation that allows the implementation of various spike time-dependent mechanisms 173 

found in the biological system is in the construction of the spiking shapes in the pre and post-174 

synaptic neurons. The summary of the findings are reprinted in Figure 11. The shape considered in 175 

this paper is demonstrated on Figure 11a, which results in the SPDT pattern shown in Figure 11g, 176 

that is consistent with the results found in this paper. 177 

 178 
Figure 11. Spike waveform engineering to demonstrateall various types of STDP present in the biological 179 

systems. 180 

3 .2  Future  d irec t io ns  181 

Having verified the properties that make memristors a convenient tool in building largely 182 
integrated synaptic connections, a more detailed analysis must be made regarding how the 183 
conductance changes with various types of spiking waveforms.  184 



Fully memristive neuron and synapse pairs is another area that has to be researched to reach 185 
for the optimum power and density characteristics.  186 
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