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Abstract 11 

Top-down feedback has been proposed to play an important role in extracting 12 
salient features in our environment. This process involves selectively increasing 13 
the activity of specific sensory neurons. Though top-down feedback has been 14 
proposed as a mechanism involved in attention, its involvement in unsupervised 15 
learning is still relatively unknown. Here, we explore the role of top-down 16 
feedback in unsupervised learning in biologically realistic neurons. To do this, we 17 
used the Brian neuron simulation environment to construct a small network of 18 
leaky integrate and fire neurons and tested the effect of top-down feedback on the 19 
changes synaptic strengths of simulated sensory neurons. In our simplified 20 
network with synaptic weights regulated by spike-timing dependent plasticity, our 21 
network could learn to discriminate between two different input types. The 22 
addition of stable top-down feedback, however, did not affect the learning rate. 23 
Additionally, we found a prominent role for inhibitory activity in the ability of 24 
our network to learn to discriminate between inputs types. Overall, our study 25 
explores the roles of top-down feedback and inhibition in unsupervised learning. 26 

 27 

1 Introduction  28 

Feedback is ubiquitous in the brain. At every structural scale there are as many, if not more, 29 

feedback connections than feedforward ones. Top-down connections represent a common type of 30 

cortico-cortical feedback in which higher level areas project back to the lower ones upstream of 31 

them.  As an example, V1 drives V2, which in turn relays back to V1 [1]. These types of 32 

connections have been observed throughout the cortex and appear to be a fundamental circuit 33 

motif. It is believed that they an important role in both selective attention, by amplifying salient 34 

features at lower levels, and in working memory, by creating an oscillator which can maintain 35 

persistent activity, however their role in learning is poorly understood [2]. 36 

 37 

Most models of neural networks consider learning to be purely a feedforward process. In 38 

traditional, biologically plausible, unsupervised learning each neuron uses a rule, such as Hebbian 39 

plasticity or STDP, to modify its synapses until they correspond to a principle component its input. 40 

Intra-layer connections create competition between the neurons causing each one to learn a 41 

different component and successive layers learn increasingly abstract features by using the activity 42 



of the preceding layer as their input [3]. While this process works well without any top-down 43 

connections, previous work has suggested that feedback may increase the selectivity of learned 44 

features [4]. Still unclear, is how it affects the network’s speed of acquisition. 45 

 46 

Understanding the effect of top-down feedback on network learning rate is important because 47 

current architectures require a long time and many examples for their synaptic weights to 48 

converge. We hypothesize that feedback may boost this rate in two ways. First, it might act as an 49 

excitatory recurrent input which increases the activity of the neurons relevant to a given pattern, 50 

thereby increasing their individual learning rate. Second, if the higher level neurons have a larger 51 

receptive than the lower ones they may be able to transfer information about global correlations 52 

back down to the lower level. In this paper we use a simple three-layer network to investigate 53 

these hypotheses. Unfortunately, we didn’t observe any change in learning rate, however future 54 

models with different types of plasticity and network parameters might yield better results. For 55 

now, it remains an open question. 56 

 57 

2 Methods  58 

We used the Brain 2.0 Python package to construct our neurons and networks. Our network 59 
was comprised of leaky integrate-and-firing (LIF) neurons similar to those from [3]. 60 
Additionally, our network contained an input layer, hidden layer, and output layer, each with 61 
eight, four, and two LIF neurons respectively. LIF neurons within the input layer were modeled 62 
by equation 1, where 𝑉0 is the input stimulus and 𝜏𝑖𝑛𝑝𝑢𝑡 is the input neuron time constant. LIF 63 

neurons within the hidden and output layers were modeled by equations 2 and 3 , where 𝑔𝑒 is 64 
the synaptic conductance (strength), 𝐸𝑒 is the synaptic reversal potential, 𝑉𝑟  is the resting 65 
membrane potential, 𝐸𝑙  is the leak reversal potential, and 𝜏𝑚 and 𝜏𝑒 are the membrane and 66 
synaptic time constants respectively. The values for these constants are provided in table 1.   67 

𝑑𝑉

𝑑𝑡
=

(𝑉0 − 𝑉)

𝜏𝑖𝑛𝑝𝑢𝑡

       (1) 68 

𝑑𝑉

𝑑𝑡
=

(𝑔𝑒 ∗ (𝐸𝑒 − 𝑉𝑟) + 𝐸𝑙 − 𝑉)

𝜏𝑚

       (2) 69 

𝑑𝑔𝑒

𝑑𝑡
=  −

𝑔𝑒

𝜏𝑒

       (3) 70 

 71 

Table 1: LIF Neuron Constants 72 

Variable Value 

𝑉0 0 mV to 2 mV 

𝜏𝑖𝑛𝑝𝑢𝑡 5 ms 

𝐸𝑒 0 mV 

𝑉𝑟  -60 mV 

𝐸𝑙  -74 mV 

𝜏𝑚 10 ms 

𝜏𝑒 5 ms 

 73 

The architecture varied between the layers of our network. There were no lateral excitatory 74 
synapses formed within a given layer, however, within the hidden and output layers, there 75 
were inhibitory synapses. For initial simulations, network connectivity contained all -to-all 76 
connections between layers, and within layers with inhibition. There were no inter -layer 77 
inhibitory synapses formed. The entire network architecture is shown in figure 1A (red are 78 



inhibitory, and blue are excitatory connections). Briefly, the input layer formed excitatory 79 
synapses onto the hidden layer neurons in an all-to-all fashion. Hidden layer neurons then 80 
formed excitatory synapses onto the output layer neurons, in addition to inhibitory synapses 81 
onto other neurons within the hidden layer. Output neurons formed inhibitory synapses on 82 
each other, and, in the case of top-down feedback, the output neurons formed excitatory 83 
synapses on hidden layer neurons. Stimulus patterns into the input layer varied between 84 
stimulus presentations. For a given trial, one set of input layer neurons received excitatory 85 
stimulation (filled circles in figure 1) while the other input neurons received none. In the 86 
following trial, the previously unstimulated neurons would receive the stimulus and the 87 
others would not. This pattern was repeated throughout the simulation.  88 

Finally, excitatory synapses between the hidden layer neurons and output layer neurons were 89 
regulated by spike-timing dependent plasticity (STDP). All synaptic weights were initialized 90 
to random values. STDP synapses were modeled in the same way (eq. 4 & 5). The values of 91 
the constants for the equations below are provided in table 2. We did not implement STDP in 92 
inhibitory synapses. 93 

𝑑𝐴𝑝𝑟𝑒

𝑑𝑡
= −

𝐴𝑝𝑟𝑒

𝜏𝑝𝑟𝑒

      (4) 94 

𝑑𝐴𝑝𝑜𝑠𝑡

𝑑𝑡
= −

𝐴𝑝𝑜𝑠𝑡

𝜏𝑝𝑜𝑠𝑡

      (5) 95 

    Table 2: STDP Constants 96 

Variable Value 

𝐴𝑝𝑟𝑒 (initial) 0.005 

𝜏𝑝𝑟𝑒 100 ms 

𝐴𝑝𝑜𝑠𝑡 (initial) -0.00476 

𝜏𝑝𝑜𝑠𝑡  100 ms 

 97 



 98 
Figure 1 Network configurations for testing input discrimination in top-down feedback condition. 99 

 100 

3 Results  101 

 102 

3 .1  Al l - to -Al l  co nnec t iv i ty  a nd  no t  f eedba ck  103 

Beginning with our all-to-all network configuration, as shown in figure 1A, we tested the 104 
ability of our network to properly distinguish between two different sets of stimuli.  We found 105 
that out all-to-all network with STDP regulated synaptic weights was able to learn to 106 
distinguish between two different patterns of stimulation (figure 2).  As shown in figure 1A, 107 
the stimulation pattern to the input neurons began with stimulation to the first, third, sixth, 108 
and eight neuron. This pattern was followed by a brief period of silence and then the second, 109 
fourth, fifth, and seventh neurons were stimulated. Initially, not all neurons within the hidden 110 
layer responded to the input layer stimulation (first trial in figure 2B). However, by the third 111 
set of stimulations, the network firing pattern in the hidden layer converged to a specific 112 
sequence of firing. The output layer neurons, however, did not show alternating patterns of 113 
activity as seen in the hidden layer neurons (figure 2C). Rather than forming distinct response 114 
patterns, the output layer behaved in a more winner take all condition, in that only one of the 115 
two neurons remained active during the periods of stimulation. This may arise from strong 116 
lateral inhibition between the two output layer neurons.  Taken together, the response in the 117 
hidden layer suggests that the network was able to discriminate between different stimulation 118 
patterns in the input layer. 119 



 120 
Figure 2 Network spiking patterns in response to varied input layer stimulation patterns. 121 

3 .2  Al l - to -Al l  co nnec t iv i ty  w i th  f eedba ck  122 

We next tested the effect of adding top-down feedback on the learning rate of our network. To 123 
do this, we added excitatory connections from the output layer to the hidden layer. Having 124 
added the feedback, we tested the network with the same input patterns as described above. 125 
With strong top-down feedback, our network was no longer able to discriminate between the 126 
input patterns (figure 3). As shown in figure 3A, the input layer responded as expected to the 127 
input stimulus, however, the hidden layer no longer learned how distinguish between stimulus 128 
types. Rather, specific neurons within the hidden layer became overly active, and suppressed 129 
activity in the remainder of neurons within that layer (figure 3B).  Interestingly, the activity 130 
within the over active neurons of the hidden layer continued even during the brief periods of 131 
silence in the input layer, suggesting that the network may have entered an unstable, 132 
hyperexcitable state. Additionally, the output layer also exhibited hyper excitability similar to 133 
that seen in the hidden layer (figure 3C). Unlike the activity output layer in the network 134 
without feedback, in this version of the network, both output neurons had continuous spiking 135 
pattern.  136 



 137 
Figure 3 Neuron spiking pattern for the network with strong top-down feedback. 138 

Since strong top-down feedback prevented the network from accurately distinguishing 139 
between stimulus patterns, we reduced the strength of the feedback to see if the strength of the 140 
feedback could affect the learning of the network. As shown in figure 4, weaker top-down 141 
feedback allowed the network to once again learn to discriminate between the two  stimulus 142 
patterns. Once again, the learning in our network took place in the hidden layer. As shown in 143 
figure 4B, the hidden layer slowly converged to specific firing patterns in response to the 144 
different stimulus patterns. The rate at which the hidden layer converged to a specific firing 145 
pattern did not, however, differ from the rate of convergence in the network without top-down 146 
feedback (compare figure 2 and figure 4). 147 



 148 
Figure 4 Neuron spiking patterns in a network with weaker top-down feedback. 149 

 150 

3 .2  Ro le  o f  in t ra - lay er inh ib i t io n  151 

Because the amount of excitability seems to have an effect on the ability of the network to 152 
correctly distinguish between the different stimuli patterns, we next tested the effect of intra-153 
layer inhibition of the networks ability to learn. We started by first removing all inhibition 154 
within the hidden and output layers. Complete removal of the intra -layer inhibition prevented 155 
the hidden layer from learning to distinguish between the two stimuli patterns (figure 5). As 156 
shown in figure 5B, similar to previous simulations, the first two stimuli trails resulted in 157 
different firing patterns in the hidden layer. The spiking patterns then quickly converged to a 158 
network state where all hidden layer neurons fired simultaneously to the input layer stimuli. 159 
This is most likely due to the fact that there was no lateral inhibition between hidden layer 160 
neurons so there was no competition between the neurons. Similarly, the output layer neurons 161 
also showed simultaneous firing in response to the firing in both input and hidden layer 162 
neurons (figure 5C). 163 



 164 
Figure 5 Neuron spiking patterns in a network with top-down feedback, but with no intra-layer inhibition. 165 

Since the lack of inhibition prevented learning in the network, we then tested the effect of 166 
strong inhibition (figure 6). We found that the increased intra-layer inhibition also prevented 167 
the network from learning. Similar to the network with no inhibition, figure 6B shows that the 168 
hidden layer neurons were unable to distinguish between the stimuli patterns. However, unlike 169 
the network with no inhibition, in this network, only one hidden layer neurons would respond 170 
to the input layer stimuli. This is due to the high amount of competition between the hidden 171 
layer neurons that arises from the strong intra-layer inhibition. The output layer neurons only 172 
firing occasionally, in stark contrast to the previous network with no inhibition  (figure 6C). 173 



 174 
Figure 6 Neuron spiking in a network with top-down feedback and strong intra-layer inhibition. 175 

3 .2  H a l f - to -Ha l f  co nnec t iv i ty  176 

Finally, we tested how learning in our network might be affected by reducing the connectivity 177 
of the network from all-to-all to half-to-half, meaning that the first four neurons of the input 178 
layer only formed synapses on the first two neurons of the hidden layer. Likewise, the last four 179 
neurons in the input layer would synapse on only the last two neurons of the hidden layer. A 180 
diagram of this network connectivity is presented in figure 1B. Similar to the all-to-all network 181 
with no top-down feedback, the half-to-half connectivity with no feedback was able to 182 
distinguish between the two different stimuli patterns (figure 7). Figure 7B shows that the 183 
hidden layer neurons gradually learned to respond differently to the input stimuli. The rate of 184 
learning in this network connectivity was similar to that seen in the all-to-all network (compare 185 
figure 2 and figure 7). 186 



 187 
Figure 7 Neuron spiking patterns in a network with half-to-half connectivity without top-down feedback 188 

The addition of the top-down feedback in the half-to-half network did not result in learning 189 
rate differences. This network was also able to learn to distinguish between the stimuli patterns 190 
(figure 8). However, in all these networks, the learning occurred at the level of the hidden 191 
layer. The output layer was unable to distinguish between the different stimuli patterns (figures 192 
2-8 panel C). 193 



 194 
Figure 8 Neuron spiking patterns in a half-to-half network with top-down feedback 195 

To quantify the differences in the learning rates due to the top-down feedback in both network 196 

configurations, we measured the number of trails before the hidden layer neurons converged to 197 

specific firing patterns as a function of the ratio of feedback to feedforward weight. As seen in 198 

figure 9, in either network configuration, the average number of steps to hidden layer convergence 199 

did not differ. This suggests that, in our network, top-down feedback from the output layer to the 200 

hidden layer did not significantly affect the learning rates. 201 

 202 
Figure 9 Mean number of step to hidden layer convergence as a function of feedback to feedforward weight 203 
ratio. 204 

4 Discussion 205 

 206 



In our model, the hidden layer was able to converge to specific, distinct patterns of spiking in 207 

response to either input pattern, when inhibition was kept within an optimal range and excitatory 208 

feedback was minimal. When mutual intra-layer inhibition was removed, uninhibited spiking of 209 

postsynaptic neurons resulted in all feedforward synaptic weights increasing. This led to a firing 210 

pattern in which all hidden layer and output layer neurons fired in response to either input pattern. 211 

Excessive inhibition resulted in a winner-take-all situation in which a single hidden layer neuron 212 

spiked in response to either input. These results demonstrated that an optimal amount of intra-213 

layer mutual inhibition is necessary for learning with input discrimination to occur. 214 

 215 

In addition, strong excitatory feedback from output neurons was able to disrupt input-specific 216 

convergence by causing persistent spiking in the hidden and output layers, akin to a seizure state. 217 

This did not occur with weaker feedback synapses, as these alone were not able to support spiking 218 

in hidden layer neurons. While in our model this persistent activity disrupted encoding, persistent 219 

spiking supported by recurrent excitatory input has been proposed to underlie working memory 220 

[2]. 221 

 222 

Our model was not able to generate input-specific spiking in the output layer. This may be due to 223 

our use of spike-timing dependent plasticity, given that our input consisted of spike trains that 224 

would have more effectively increased synaptic weights with a spike rate-based model of 225 

plasticity. Likely because of the lack of input-specific spiking in output neurons, excitatory 226 

feedback to the hidden layer from these neurons did not improve the learning rate in hidden layer 227 

neurons. 228 

 229 
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