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Abstract 8 

The Hippocampal regions CA3 and CA1 have been demonstrated to play a role 9 
in memory consolidation and spatial navigation. Recurrent Collaterals (RC) in 10 
CA3 Pyramidal cells serve as a feedback mechanism onto CA3 cells while 11 
Schaffer Collaterals (SC) directly project synaptic inputs from CA3 to CA1. The 12 
neuronal activity from RC and SC have been associated with Long-term 13 
Potentiation, gamma frequencies, and Sharp-Wave Ripples oscillations (SWR), 14 
activities present during events believed to be related to long-term memory 15 
storage. This project explored the effects of altering the number of synaptic 16 
connections within each region and between the two regions. By varying the 17 
probability that synaptic connections will form in CA3’s RC and the SC, it was 18 
determined that there was a non-obvious and non-linear effect for each region’s 19 
ability to be engaged in a particular firing frequency. It was found that 20 
approximately a ten percent connection between both the Schaffer collaterals and 21 
the recurrent collaterals best engaged CA3 and CA1 in gamma and ripple 22 
frequencies. 23 

 24 

1 Introduction  25 

The Hippocampus, a region of the brain located underneath the cerebral cortex, is a well-studied 26 

structure widely considered the main structure responsible for memory formation and consolidation 27 

(Fig.1). In recent years, much of the research within the hippocampus has been dedicated towards 28 

understanding place cells. Place cells are cells hypothesized to encode spatial information about a 29 

subject’s environment and is useful for navigation and spatial awareness [11]. Some recent work, 30 

however, has been dedicated towards understanding how stimulation of regions local to the 31 

hippocampus can best facilitate neuronal engagement [12]. In particular, this study has shown that 32 

varying frequency of stimulation causes nonlinear neuronal engagement [12]. This work has been a 33 

large step forward in understanding how information is transferred within the hippocampus. As a 34 

next step, this project explores a way of estimating the number of connections that best facilitates a 35 

particular frequency band. The hippocampus has been shown to primarily engage in theta, gamma, 36 

and ripple frequency ranges [1] [4]. By determining the number of connections that best engages 37 

the hippocampus with these particular frequencies, a general estimate can be made in how many 38 

synaptic connections are formed between regions of the hippocampus. 39 



 40 

Figure 1: Hippocampal Formation as reprinted from Neurophysiology of Seizure and Epilepsy 41 

(2015) [14] and memory consolidation pathway. (1) The event synapse travels through the 42 

Perforant Pathway originating from the Entorhinal Cortex into the (2) Dentate Gyrus (DG). From 43 

the DG the signal projects through the (3) Mossey Fibers into region CA3. Schaffer Collaterals 44 

from CA3 stimulate (4) Pyramidal Cells in CA1. The synapse travels through the (5) Subiculum 45 

where it will then be stored in the Neocortex (not shown) for long term storage. 46 

The Hippocampus is separated into four regions, CA1, CA2, CA3, and CA4. For the purpose of 47 

memory consolidation, research has demonstrated a correlation between neuronal activity in regions 48 

CA3 and CA1 during events related to long-term memory formation [15]. Communication between 49 

CA3 and CA1 occurs directly through SC [13]. Meanwhile CA3 receives feedback inhibition 50 

through its RC [8]. The synaptic firing frequency of RC and SC are believed to induce long-term 51 

potentiation (LTP) as well as the gamma and theta frequencies that occur during memory formation 52 

[10]. The. Memory formation involves the activation of a pattern of neurons in the hippocampus. 53 

The synaptic event begins when the hippocampus receives primary sensory inputs via the Perforant 54 

pathway [4]. Figure 1 depicts the pathway of the synapse as it travels through the Dentate Gyrus 55 

(DG), CA3, CA1, and ends at the subiculum. LTP is a reflection of synaptic plasticity and is the 56 

process by which the synapse increases in strength through repeated activation of its neurons until 57 

they synchronize to one another [7]. Therefore for the purpose of understanding memory 58 

consolidation, the connection between hippocampal regions CA3 and CA1 was investigated. 59 

Diagnostic applications generally focus on the spectral content of Electroencephalography (EEG), 60 

the type of neural oscillations also popularly known as brain waves, which can be observed in EEG 61 

signals [5]. These waveforms are subdivided into bandwidths known as alpha, beta, theta, delta and 62 

ripple (Table 2).  As a result, during SWRs, network oscillation is higher in CA1 than in CA3. The 63 

increase in firing frequencies of oscillations are crucial to how information is conveyed throughout 64 

the hippocampus. This project attempts to develop a method of estimating the number of 65 

connections that best facilitate these frequencies of oscillation. This was done by developing a 66 

hippocampal model that analyzes the frequencies represented in CA3 and CA1 as a function of 67 

number of synaptic connections in the RC and SC pathways.  68 

2 Methods  69 

In order to best model normal neurophysiological behavior, a computational model was created 70 

using Hodgkin-Huxley differential equations as governing equations for CA3 and CA1 spiking 71 

behavior. These equations are depicted below in section 2.2. Constants and parameters unique to 72 

CA3 and CA1 neuronal cells were pulled from literature, so as to best mimic normal physiological 73 

conditions, and are depicted in table 1 [9]. The model was built in python using the Brian Spiking 74 

Neural Simulator [3]. This model was created as a simplified version of a hippocampal model. The 75 

model uses only two systems, CA3 and CA1, and mimics other network input in the form of random 76 



stimulation applied to both systems. Two types of synaptic connections were created; Schaffer 77 

Collaterals between CA3 and CA1 and recurrent collaterals within CA3, depicted in Figure 2.  78 

 79 
Figure 2: Block diagram depicted Hippocampal regions CA3 connected to region CA1 via SC 80 

(bold arrow) and the RC (dashed arrow) on CA3.  81 

2 .1  Assu mpt io n s  82 

The model was created with the following assumptions also obtained from literature [9] [16]. 83 

1. CA3 pyramidal cells receive a single black box input. This means there is one synaptic 84 

input that stimulates the entirety of region CA3.  85 

2. The single input induces an organized activation of CA3 Neurons at a specific sharp-wave 86 

event. This means that CA3 neurons spike in an organized event which induces selective 87 

inputs to CA1.  88 

3. CA1 in induced selectively and its pyramidal cells due not spike more than once per 89 

oscillation. This is important because in reality, neurons fire sporadically and randomly 90 

which with current available computational power, would be difficult to model.  91 

4. A model size of 36 neurons within CA3 and 44 neurons with 44. From literature, it has 92 

been shown that in a normal adult Sprague Dawley has approximately 36,000 neurons in 93 

CA3 and 44,000 neurons within CA1 [2]. To decrease computational requirements, this 94 

number of neurons was scaled down while maintaining the same relative number of cells 95 

within each region. It is assumed that this scaled number of neurons will still mimic normal 96 

neurophysiological function. 97 

2 .2  Equa t io ns  98 

The model utilized the following Hodgkin-Huxley equations for Pyramidal Cells [9] in both CA3 99 

and CA1 regions and were modeled with Brian [3] through Python. 100 

  101 

2 .3  Pa ra meters  102 



The following table depicts the parameters obtained from Malerba et al. 2016 [6] as well as the 103 

frequency values investigated in the results. 104 

Table 1: Values of Parameters  105 

 106 

Parameter Value Parameter Value 

C 200 pF Delta 2 mV 

g
L
 10 nS τ

w
 120 ms 

E
L
 -58 mV V

T
 -50 mV 

a 2 V
r
 -46 mV 

b 100 Pa V
thr
 0 Mv 

 107 

 108 
Table 2: Frequency Values 109 

Waveforms Frequency Range 

Delta < 4 Hz 

Theta 4 - 8 Hz 

Alpha 11 - 15 Hz 

Beta 16 - 31 Hz 

Gamma 32 - 140 Hz 

Ripple 140 - 200 Hz 

 110 

2 .4  S ing le  Neu ro n  Spi k ing  B eha v io r   111 

To confirm that the model accurately generates normal physiological spiking behavior, both a 112 
random probability pair and a random neuron from both CA3 and CA1 was chosen be observed as 113 
the model was run. Figure 3, shown below, demonstrates an example of the model’s capability to 114 
mimic normal spiking behavior. 115 



 116 

Figure 3: Spiking behavior of randomly chosen single neuron from CA3 and CA1 regions.   117 

2 .5  Sy na pt ic  Co nnec t io ns  o f  Recurrent  a nd  Scha f f er Co l la t era l s    118 

After confirming that the model worked within normal physiological parameters, the model was 119 
run one hundred times across one hundred sets of probability pairs. These probability pairs ranged 120 
from 5% to 50% probability of forming a synapse in both Recurrent and Schaffer Collaterals in 121 
increments of 5%. Spiking behavior across all neurons in both CA3 and CA1 regions were then 122 
normalized together to produce a region specific network potential. A fast Fourier transform was 123 
then applied to both network potentials to create a power spectral density measure for each 124 
frequency within physiologically relevant ranges. Figure 4, depicted below, is an example of one 125 
of the hundred probability pairs that were run. 126 

 127 

Figure 4: An excerpt of one of the 100 probability connection pairs between CA3 and CA1. a). 128 
This plot demonstrates the RC connections with SC probability P = 0.15 and RC P = 0.45.  b). 129 

This plot demonstrates the SC connections with SC P = 0.15 and RC P = 0.45. c). This plot is the 130 
Power Spectral Density Plot (PSD) for CA3 pyramidal cells with given probabilities. d). This is 131 

the PSD for CA1 pyramidal cells with mentioned probabilities.  132 

 133 



The frequencies most represented within each network potential was then classified and summed 134 

into its corresponding frequency band so as to best represent the relative representation of a 135 

particular frequency band with each particular probability pair. The cut off of frequencies that were 136 

chosen to represent each probability pair were those equal to at least 1.5 times that of the average 137 

power spectral density for the system and is shown as the red line pictured above in figure 4. Each 138 

probability pair along with the relative representation within each frequency band is depicted in the 139 

four 3D wire plots in the results section. 140 

3 Results  141 

In each of the 3D wire plots generated as a result of this project, CA3 is depicted on the left and 142 
CA1 is depicted on the right. The percentage corresponding to probability of forming synaptic 143 
connections in the Schaffer and recurrent collaterals are depicted on the X and Y coordinates of each 144 
3D wire plot with the number of relative representation within the particular band depicted on the Z 145 
coordinate. 146 

 147 

Figure 5: This figure depicts the representation of alpha oscillations in CA3 and CA1 regions. 148 

As depicted above in figure 5, the alpha frequency band is best represented within CA3 at lower 149 
recurrent probabilities and was SC connection agnostic. The opposite behavior is observed in CA1 150 
where low probabilities of SC seem to best facilitate alpha band representation while seeming to be 151 
agnostic to recurrent collateral connections. 152 

 153 
Figure 6: This depicts the frequencies in the beta range in CA3 and CA1 regions. 154 

A similar trend was observed in the CA3 region for both beta and alpha frequency bands. For CA1, 155 
however, it is shown above in figure 6 that the alpha frequency band is best facilitated with low RC 156 
and SC. This is a distinct difference between the alpha and beta frequency bands. 157 



 158 
   Figure 7: This figure depicts the representation of gamma oscillations in CA3 and CA1 regions.  159 

An interesting valley is observed in figure 7 for the gamma frequency band in CA3. Very low or 160 
very high recurrent collateral probabilities facilitated neuron firing throughout all SC probabilities. 161 
A similar trend was not observed in CA1, as the plot was biased towards midline SC probabilities 162 
and low recurrent collateral probabilities. 163 

 164 
Figure 8: This depicts the frequencies in the SWR range in CA3 and CA1 regions. 165 

Six distinct troughs were observed for ripple oscillations in CA3 region. This implied that there are 166 

distinct probabilities that can generate ripple oscillations - either low or high probabilities of both 167 

RC and SC, or low probabilities of one collateral and high probabilities of the other, or midline SC 168 

probabilities and low or high recurrent collateral probabilities. Trough-like plot was not observed in 169 

CA1 neuron firings as opposed to what was observed in CA3. For CA1, there seemed to be a bias 170 

towards midline SC probabilities and either low or high RC probabilities, unlike gamma oscillations.  171 

4 Conclusion   172 

As a result of analyzing the results of our model, it was determined that having approximately ten 173 

percent of CA3 neurons engaged in RC connections and ten percent of CA3 neurons engaged in SC 174 

connections, gamma and ripple frequency ranges were best facilitated and thus best mimicked 175 

normal hippocampal behavior. 176 

While interesting, our model had many limitations that may have led to non-physiological relevant 177 

results. Namely, our model failed to produce frequencies within the delta and theta frequency ranges. 178 

This is likely due to not creating inhibitory neurons within our hippocampal model. It has been 179 

shown in literature that inhibitory neurons, although faster firing than excitatory neurons, help 180 

facilitate the lower frequency oscillations within the brain [13]. Without inhibitory neurons, our 181 

model was unable to mimic these frequency bands, regardless of the number of synaptic connections 182 



chosen. Moving forward, a necessary first step when expanding this model is to differentiate 183 

between excitatory and inhibitory neurons by using different set of parameters for each type. 184 

Another limitation of this model is the low number of neuronal cells used. For the scope of this 185 

project, and because no inhibitory neurons were modeled, the number of cells being used was kept 186 

low. An assumption of this model was that this would not change the dynamics observed within the 187 

system, but this would need to be verified. As such, another next step that this model should take is 188 

to scale the system and see how the network behavior might change. This would need to be done 189 

after first adding inhibitory neurons, however, as scaling the system without inhibitory neurons 190 

would lead to overstimulation of both systems. 191 

Other future steps would then be aimed at including more systems starting from the dentate gyrus, 192 

followed by lateral and medial entorhinal cortex of the hippocampus. Finally, in order to extract a 193 

finer local field potential, we want to model different compartments of the cell. 194 

Interestingly, at gamma oscillations, there is an absence of theta rhythm in the hippocampus [15], 195 

although the reason for this is yet to be determined and requires further study. 196 

While limited, the model developed within this project is a step towards understanding how 197 

information is conveyed within the hippocampus. Recent work has shown the importance that 198 

stimulation frequencies have on conveying information. This project has been successful in showing 199 

that there are non-obvious and non-linear relationships of systems within the hippocampus that these 200 

frequencies are best facilitated. 201 

 202 
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