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Abstract 

To investigate neural correlates of collaborative actions between parents 
and their children, EEG data was recorded during a social interaction. 
Four dyads of one parents and one of their children (mean age: 4.6 years) 
played a turn taking game with high and low reward outcomes. After 
learning the rule of the game, the reward contingency was reversed in 
20% of trials, thereby eliciting a prediction error. Independent component 
analysis (ICA) was used to determine and exclude non-brain components. 
The children’s data is inconclusive, possibly because of the small number 
of subjects. The parents’ event related potential show P3a positivity 
dependent on reward outcome during their own actions. During 
observation of their child’s action, the P3a component is effected by the 
reward expectation, not the actual outcome. Interestingly, this is in 
contrast with event related potentials of two unacquainted adults 
recorded during the same experiment.  

 

1  Introduction  

In our everyday life, actions are often motivated by the expectancy of a certain outcome. 

Continuously, we compare our predictions of the future with the actual outcome. A discrepancy 

between prediction and outcome is commonly called prediction error. Prediction errors play an 

important role in learning and decision making. They signalize the need to update our internal 

associations between action and outcome and thus lead to increased performance during similar 

situation in the future (Liao et al., 2011; 2015).  

Of special interest is the effect of outcome expectancy and its violation during social interaction. 

In an EEG study with dyads of previously unacquainted adults, Deák et al. found neural 

correlates of expected and unexpected reward processing. Interestingly, these event related 

potentials (ERPs) could be found both while acting themselves and when observing their 

partner’s actions. In this study, the same paradigm eliciting social interaction and prediction 

error was used in dyads of parents and their preschool children. It is intriguing to investigate if 

the special relationship that these humans share can be correlated to EEG data.  

It has been established that the so-called P300 ERP component is influenced by attention during 

task processing (Polich and Kok, 1995). Hence, it can be assumed that the prediction of a certain 

outcome and the actual outcome itself have an effect on the amplitude of the P300 ERP. 

Generally, the P300 component can be divided into the earlier P3a and later P3b 

subcomponents. According to Polich (2007), while the definite source or processes underlying 

these positive potentials is not known with certainty, P3a seems to mainly related to attention 

and P3b to memory processing. 

Over the past years, independent component analysis has been used and methods improved for 

applications on EEG data, especially the separation of non-brain signals (Jung et al., 2001). In 

this context ICA works under the assumptions that at the electrodes signals are mixed in a linear 

fashion, the signal propagation delays are negligible, component locations are spatially fixed 



and time course independent, and that the number of independent components is less or equal 

the number of scalp channels (Makeig et al., 1996).  

In respect to brain components, ICA bypasses the so-called ‘inverse problem’ and simplifies 

the determination of signals source location within the brain. This is done by separating the 

recorded scalp data into distinct signals and modelling independent sources for each of these 

signals that are able to explain the recorded data most closely. Conversely, in respect to non-

brain data, ICA is a useful tool to identify artifact data. It has been shown to efficiently separate 

data originating from muscle activity and eye movements such as blinks and saccades. 

However, non-stereotyped artifacts such as extreme movements of individual testing subjects 

cannot be separated. Comparing different ICA algorithms, Delorme et al. (2012) found 

Adaptive Mixture ICA (AMICA) to be best performing for decomposition of EEG data. The 

EEGLAB toolbox for MATLAB has been developed for user-friendly application of these 

principles (Delorme et al., 2004).  

 

2  Methods  

2 .1  Part ic ipants  

Four dyads of children and one of their parents volunteered to participate. The 

electroencephalogram (EEG) data of one child had to be excluded from the study owing to 

excessive artifacts. Two of the three remaining children were female, their mean age was 4.6 

years (range between 3.8 and 5.0 years). Two of the four parents included in the study were 

female, their mean age was 35.75 years (range between 31.0 and 39.4 years). All participants 

were English speakers, right-handed, had normal or corrected to normal vision and no self-

reported diagnosed neurological or psychological disorders. Two dyads did not finish the entire 

game. The experiment was approved by UCSD’s IRB. Participants received $20 and a toy for 

the child for their participation.  

2 .2  Exper imenta l  des ign  and procedure   

The parent-child dyads played a ‘bubble popping’ game while different physiological measures 

were recorded. They took turns to press one of two bubbles, as shown in figures 1 and 2. 

Depending on one’s action, pressing the bubble leads to “popping the bubble” (high reward) or 

“wobbling of the bubble” (low reward). The participants were instructed that their goal is to pop 

as many bubbles as possible, but aside from that, the sound during popping the bubble is more 

pleasant that the one played during the wobbling. The underlying rule is that if the partner’s 

action is matched, that is the same bubble is touched that was touch by the partner before, the 

outcome is the high reward. Conversely, if one touches the other bubble than the partner did 

before, that is, mismatching the action, the outcome is low reward. 150ms after touching the 

bubble, visual and auditory stimuli dependent on reward value appear for 400ms. The game 

consists of four blocks. During the first block (68 trials) participants should try to find the 

underlying rule leading to high rewards via trials and error. Block two and three each contain 

200 trials, intermittent by a break. During these 200 trials the reward contingency is reversed in 

random 20% of the cases. During the break, both participants are offered drinks and snacks. 

The last block consists of 48 trials in which the matching rules applies in all cases. See figure 3 

for an overview. In case one of the participants failed to take turns, the bubbles disappeared and 

reappeared again. 

To summarize, when touching a bubble there are four conditions: 

(1) Matching the partner’s actions   high reward 

(2) Matching the partner’s actions  low reward 

(3) Mis-matching the partner’s actions   low reward 

(4) Mis-matching the partner’s actions   high reward 

Condition (1) and (3) occur when the “normal” matching rule applies, conditions (2) and (4) 

occur when the reward contingency is reversed.  

Consequently, the EEG signals can be compared between  

- Reward outcome: high vs. low reward 

- Satisfaction of prediction: expected vs. unexpected outcome  

- Actor: self-acting vs. observing the other 

 



 
Figure 1: Child and parent playing the bubble game while EEG was recorded 

2 .3  Data  acquis i t ion   

Each parent-child dyad was seated comfortably facing each other across a table-mounted 

capacitive touch screen monitor (diagonal:66-cm, Elo, California, USA) on which the game was 

presented (see figure 1). Average time of playing the game was 31.25min with an additional 

average break time of 5.9min. During the whole time, both child and parent wore elastic EEG 

caps with 64+1 active electrodes (actiChamp, BrainProducts, Germany). EEG was recorded 

continuously with a sampling rate of 500 Hz. One electrode was placed on the right mastoid 

and one on the left temple to record ocular movement.  Electrocardiogram (ECG) was measured 

via three electrodes. Hand motion was recorded by means of a 6-camera NaturalPoint Optitrack 

system that registers the position of pre-calibrated rigid bodies with a sampling rate of 100 Hz. 

Reflective three-marker rigid frames (NaturalPoint, Oregon, USA) were placed on a soft band 

on both of the participants’ right wrists.  Video cameras captures HD videos (30 Hz) from four 

perspectives: a close-up view of each participant’s head and upper body, a side view of the 

participants (see figure 1) and a view from above. In addition, both participants wore 

microphones. However, the ECG, and behavioral data was not analyzed in the scope of this 

project.  

EEG and ECG recordings, motion capture markers, motion triggered events, touch screen 

events and locations, and programmed game events were synchronized using the MATLAB 

toolbox LabStreamingLayer (Delorme et al., 2011). 

 

 
Figure 2: Screen during the bubble popping game. The squares with the bubbles are approximately 

12x12 cm2, 35 cm apart. After touching one of the bubbles, visual and auditory stimuli according to high 

or low reward appear. 



 
Figure 3: Overview of the four blocks during the experiment. The reward contingency during block one 

and four strictly follow the matching rule, during block two and three the reward contingency is 

reversed in 20% of the cases. Number of turns per person is half of the number of trials in each block. 

 

2 .3  EEG data  ana lys i s   

EEG data was preprocessed using customized MATLAB scripts in the EEGLAB toolbox. EEG 

data was bandpass filtered with a low boundary of 1Hz and a high boundary of 59 Hz. Channels 

which recorded extremely high or low potentials (higher or lower than mean of all channels ± 

5 SD) were rejected. On average, 60 channels (ranging from 55 to 62) could be used for analysis. 

These remaining channels were re-referenced to their average. Furthermore, the time between 

finishing the last trials of block two and the first trials of block three (the break time) was 

removed. The final EEG dataset had a mean length of 27.0min with a mean of 810k data points 

for ICA decomposition.  

The remaining EEG data was analyzed using Adaptive Mixture Independent Component 

Analysis (AMICA). Thereby the data is separated into maximally independent activity sources 

(Palmer et al., 2008; Delorme et al., 2012). Non-brain components can be identified and 

separated from the actual signal from cortical sources. The dipfit algorithm of the EEGLAB 

toolbox finds dipoles within the brain that most closely explain the signal detected at the scalp. 

According to the location of these dipoles, the independent components are clustered together. 

Exemplarily, figure 4 illustrates signals that could be detected on the parents’ scalps originating 

from different clusters of brain and non-brain independent components. In these scalp maps the 

source of the signal is (a) within the brain, (b) eye movement or (c) muscle artifacts.  

 
Figure 4: Scalp maps of signals originating from (a) source within the brain, (b) eye movement, (c) 

muscle artifact. 
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Figure 5: Independent components clustered together according to their location within the brain. Left: 

Average scalp map (in large) and single scalp maps of individual components. Right: Dipole 

localization within the brain. Red is the average localization of all independent components, blue are 

the independent components per se. 



The brain component cluster in figure 4(a) consists of 5 independent components from three of 

the four parents (see figure 5). On the right panel, you can see the modelled cluster of 

independent components within the brain.    

Subsequent of AMICA, epochs that still contained data with artifact were rejected with a 

probability based algorithm from EEGLAB. Channel level data was reconstructed after 

separation of non-brain artifacts via AMICA. In all event related potentials (ERPs) shown here, 

difference in potential between conditions was tested via ANOVA of the average values of each 

condition, and Bonferroni corrected for multiple comparisons. Furthermore, the peak amplitude 

overall and the mean potential between 680ms and 720ms was compared between reward 

outcome and satisfaction of prediction with repeated measures using single trial data for each 

condition. Significance level was set to 0.05.  

 

3  Results  

3 .1   Parent  and ch i ld  performance   

Table 1 displays the mean amount of trials in each condition for the parents and children 

(rounded to the next integer). 

Table 1: Mean amount of trials by condition 

 matching action mismatching action 

 high reward low reward low reward high reward 

parent 59 26 38 21 

child 68 23 37 19 

 

Naturally, there are less trials of the conditions were the reward contingency is reversed. 

Interestingly, the amount of trials in each conditions is fairly similar between parents and 

children. The only exception might be when matching the partner’s action and the matching 

rule applies. Children had this condition on average on 68 trials in comparison to 59 trials when 

the parent was playing.  

3 .2  Chi ldren’s  EEG data  

Figure 6 shows the reconstructed Cz channel level data after rejection of non-brain components 

from the EEG data. The children’s EEG data is inconclusive in respect to the effect reward 

expectancy or outcome on the ERP. After the children’s own actions (lower panel), there are 

two relatively long time periods with significant differences between the conditions, the first 

between 200ms and 400ms, the second between 850ms and 1050ms. At both times the 

unexpected high reward after mismatching the parent’s action elicits a (more) negative potential 

than the other three conditions. During observation of the parent touching a bubble (upper 

panel), there were two short time points at around 550ms and 700ms, and a longer period around 

1000ms in which the ERP was significantly different between the four condition. However, 

these results have to be considered cautiously in the light of the fact that it comprises data from 

only three subjects.  

3 .3  Parents ’ EEG data   

In comparison to the children’s data, the parents’ data does show distinct peaks in ERP (see 

figure 7). During their own action (lower panel), there is a significant difference at 350ms to 

400ms. For all conditions the potential rises relatively fast. This well-established late positive 

component is called P300, or concretely the subcomponent P3a. We found that it is most 

positive for unexpected high reward condition, followed by the expected high reward, the 

expected low reward and the unexpected low reward conditions. That is, the amplitude of this 

positive potential is influenced by the actual outcome (high vs. low reward). On top of that, 

expectancy (violation) seems to have an influence. Furthermore, in the long time period between 

550ms and 800ms, the potential is different between the four conditions. If the outcome is a 

high reward, independent if the partner’s actions have been matched or not, the positive 

potential decreases faster and stays at around 2uV for 150ms (between 650ms and 800ms). In 



the low reward conditions however, the positive potential decreases more slowly and stays 

around 0uV afterwards. 

When observing their own child play the game (touch a bubble), the periods when the potential 

is different for different conditions occurs at around the same time as when playing themselves. 

The amplitude of the P3a component shows a distinct correlation with predicted or unpredicted 

outcome, that is with appliance of the matching rule. If the child touches the same bubble as the 

parent before and the outcome is a high reward and if the child touches the other bubble as the 

parent before and the outcome is a low reward, the peak P3a amplitude is up to 6uV. That is 

around 2uV higher than during the other two conditions. However, the later difference in 

potential, between 650ms and 850ms, shows a similar pattern than during the parents own 

actions. If the outcome was low reward, the potential fluctuates around 0uV, whereas if the 

outcome was high reward the potential decreases to around -2uV for about 100ms.   

Notably, the significance test used for the ERPs reduced the variance of the data by averaging 

over all single trials per condition. Application of repeated measures using single trial data of 

each condition does not reproduce the significant differences. The p-values of these test are 

displayed in table 2. All of them are above the significance level of 0.05. That is, from this data 

no significant effect of reward outcome or satisfaction of prediction can be concluded. However, 

in the light of the small number of testing subjects that participated in the study, it is interesting 

that at least for expected vs. unexpected outcomes a trend towards an effect on the peak 

amplitude can be found (p-values are 0.143 and 0.158 for self-acting and action observation, 

respectively). 

  

 

 

Figure 6: Event related potential (ERP) of children observing their parent play (upper panel) 
and playing themselves (lower panel). 0ms is touching the bubble, visual and auditory stimuli 

indicating the high or low reward start appearing at 150ms. The lower sect section of both 
panels displays the results of a Bonferroni corrected ANOVA. Black bars indicate a p-value of 

less than 0.05. N=4 



 

Figure 7: Event related potential (ERP) of parents observing their child play (upper panel) 

and playing themselves (lower panel). 0ms is touching the bubble, visual and auditory stimuli 

indicating the high or low reward start appearing at 150ms. The lower section of both panels 

displays the results of a Bonferroni corrected ANOVA. Black bars indicate a p-value of less 

than 0.05. N=4 

 

Table 2: P-values of repeated measures from single trial data 

 self (parent playing) other (parent observ. child) 

 Peak 

amplitude 

overall 

mean 

amplitude 

(680-720)ms 

Peak 

amplitude 

overall 

mean 

amplitude 

(680-720)ms 

Reward outcome (high vs. 

low) 

0.472 0.451 0.445 0.259 

Satisfaction of expectation 

(expected vs. unexpected) 

0.143 0.689 0.158 0.298 

 

 

 

 

 

 



4  Discussion  

4 .1  Strength  and  l imi ta t ions   

Until today, most studies using EEG as imaging method still conduct experiments whereby 

testing subjects are set in a dark room and asked to look at a monitor, move as little as possible 

and if at all the only way in which they act is by pressing a button. Hence, one of the main 

strength of this study is how much more closely an everyday social interaction between two 

persons is mimicked. By letting a parent and their child play a game together while recording 

physiological measures, the behavior and neural correlates of such an omnipresent situation can 

be investigated.  

On the other hand, precisely because we did not (excessively) restrict motion of our testing 

subjects, the data is more prone to include motion artifacts. This especially applies to the 

children’s data. As mentioned above, since AMICA is unable to separate individual, spatially 

non-stereotyped artifacts, the recorded EEG data has to be cleaned before decomposition. This 

cleaning processes might not have been aggressive enough to result in sufficiently good data. 

An obvious but fairly easily solvable shortcoming of this study is the very small number of 

testing subjects. With data included from only three children and four parents, our findings have 

to be considered cautiously until replicated. Furthermore, since different visual and auditory 

stimuli are used to indicate high or low reward, it has to be determined how much these stimuli 

alone influence the subsequent brain potential.   

4 .2  Compar ison  between  parent /ch i ld  dyads  and  dyads  o f  

unacqua inted  adul t s   

Previous to this study, the same experimental design was used in a study with 21 dyads of 

unacquainted adults. Owing to the inconclusive data from the children, we are only comparing 

the parents’ data with the findings of that study. In this comparison, several discrepancies and 

similarities are obvious. First, in the adult/adult study, the P3b ERP component is very distinct, 

which is not the case regarding the parents’ ERP data. While a second positive peak is slightly 

apparent around 550ms after the parent’s own actions, no such second ERP component can be 

detected after observation of the children’s action. Second, during action observation (upper 

panel in figures 7 and 8) the late negative component at around 800ms is very similar between 

parents and unacquainted adults. In both cases, high reward (expected and unexpected) has a 

negative potential, while low reward has not. Therefore, this ERP component seems to be 

related to the actual outcome. Contrarily though, while the P3a component in adult/adult dyads 

also is mainly dependent on the actual reward outcome, the P3a component in parents is mainly 

dependent on reward expectancy. This might be an indication of the parents’ increased attention 

for the consequences of the children’s actions.  This is a very fascinating result but, as stated 

above, it should be considered cautiously until the experiment is repeated with further subjects. 

 

5  Conclusion and future direct ions  

This unique study investigates the neural correlates of action related reward and prediction error 

during a social interaction between a parent and their child. Furthermore, the event related 

potentials not just during one’s own actions but during observation of the partner’s action have 

been recorded. The children’s EEG data is inconclusive, most probably due to a high amount 

of motion artifacts that were not removed aggressively enough and due to data from only three 

testing subjects. The parents’ data on the other hand revealed an interesting dependence of the 

peak P3a amplitude on reward outcome during their own actions, and, intriguingly, on reward 

prediction during observation of their children’s actions. It is fascinating that this latter effect 

of reward prediction on P3a amplitude has not been found in an experiment using the same 

paradigm but with dyads of unacquainted adults. Hence, we conclude that this might be an 

indication of the parents’ increased attention for the consequences of the children’s actions.   

Next steps are first to replicate these findings with at least ten more parent/child dyads. 

Thereafter, it would be interesting to see the neural correlates of these social interaction between 

other dyads with a special relationship to each other, such as siblings or couples. Furthermore, 

a similar effect of P3a dependence on reward prediction during observation of someone else’s 

action might be able to be elicited by introducing asymmetry in reward outcome, such as having 

one of the partners getting higher and lower rewards as the other one. 



 

 

Figure 8: Event related potential (ERP) of adults observing an unacquainted adult play 

(upper panel) and playing themselves (lower panel). 0ms is touching the bubble, visual and 

auditory stimuli indicating the high or low reward start appearing at 150ms. The lower 

section of both panels displays the results of a Bonferroni corrected ANOVA. Black bars 

indicate a p-value of less than 0.05. N=42 
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