
 

Simplified Model of Machado-Joseph Disease in Comparison 
to Parkinson’s Disease and Normal Models 

 

 Anjulie Agrusa  Mike Aquino 1 
 M.S. Student of Bioengineering M.Eng. Student of Bioengineering 2 
 UC San Diego UC San Diego 3 
 San Diego CA San Diego CA 4 
    5 
                                     Julia Hardy                              M. Fikret Yalcinbas 6 
                       Ph.D. Student of Bioengineering  M.Eng. Student of Bioengineering  7 
                                    UC San Diego                                  UC San Diego  8 
                                    San Diego CA            San Diego CA  9 
    10 

Abstract 11 

A Hodgkin-Huxley model was constructed in MATLAB with seven neurons that 12 
collectively represent each of the main regions of the brain. One model affected 13 
by Parkinson’s Disease (PD) and a Machado-Joseph Disease (MJD) model were 14 
developed using the orignal healthy model as a basis. To simplify the model given 15 
the limited resources regarding MJD activity, all conductance values and 16 
equilibrium potentials are standard across all regions of the brain. The bulk current 17 
and behaviors between the regions are represented through synaptic or inhibitory 18 
connections. Therefore, adjusting the synaptic strengths and/or inhibitory power 19 
between the neurons within the healthy model such that the brain mimics PD and 20 
MJD, created the two unique disease models. In order to accurately compare the 21 
behaviors of the networks, we used uniformly scaled current across the disease 22 
models. Given an external current to the Substantia Nigra at the beginning of the 23 
network, we observed the spiking frequencies of the cortex, represented as the 24 
final neuron in the network. The cortex neuron is presumed to excite the motor 25 
cortex, thus causing the motor deficit symptoms. Our hypothesis was that we can 26 
infer whether the network resembles a PD or MJD by observing the output spiking 27 
behavior in response to known currents. 28 

 29 

1  Background and signif icance  30 

 31 

Misdiagnosis of Parkinson’s (PD) and Machado-Joseph disease (MJD) is a result of their 32 

similar initial symptoms. The symptoms of Parkinson’s (tremors, rigidity, slowness of 33 

movement, and impaired balance and coordination) overlaps with the symptoms of Machado -34 

Joseph Disease (progressive clumsiness, staggering lurching gait, difficulty with speech and 35 

swallowing, and impaired eye movement).  However, the diseases affect the brain differently.  36 

 37 

Parkinson’s is a motor system disorder caused by a loss of dopamine-producing brain cells. It 38 

affects the Substantia Nigra, Striatum, Globus Pallidus Externa, Globus Pallidus Internal, and 39 

Thalamus regions of the brain [1]. The disease usually affects people over 60, but early onset 40 

Parkinson’s can occur as young as 21.  41 

 42 

Machado-Joseph disease is a movement disorder caused by a polyglutamine-encoding CAG 43 



repeat mutation of ATXN3 gene [2]. It affects the Striatum and Subthalamic Nucleus regions 44 

of the brain primarily, but other studies have shown other areas of affect as we ll [3]. Typical 45 

onset is as early as 10 and as late as 70 years of age with the average maximum life expectancy 46 

at 30 years from onset. The disease eventually leads to a complete loss of function of muscles 47 

and organs. 48 

 49 

The goal of our project is to construct models of the brain affected by both PD and MJD that 50 

can exhibit discernible behaviors when given the neural parameters associated with the 51 

respective pathologies of the diseases, all of which is based from the diagram (Figure 1). By 52 

creating an objective, measurable algorithm that takes the neural input and output of the 53 

affected regions into consideration, we hope to reliably predict which disease is being 54 

presented in the patient 55 

 56 

 57 
Figure 1 – Model of healthy brain connectivity versus unhealthy brain connectivity. (Adapted from 58 

[1]) 59 
 60 

2  Methods  61 

 62 

The seven-neuron network is constructed based on Figure 1. Each neuron in the network is 63 

modeled by the Hodgkin Huxley model1 (Eq. 1). The voltage differential equations for each 64 

neuron, as well as each gating variable (Eq. 2-5) are solved for as a system of 35 ordinary 65 

differential equations via MATLAB’s ODE23. The channel opening and closing rate functions 66 

(α and β) are shown in equations 6-15. They are evaluated as functions of each neuron’s 67 

specific membrane voltage. Because the whole neural network is modeled as a system of 68 

ordinary differential equations, these channel’s opening and closing rate functions can be 69 

dynamically evaluated for a fluctuating membrane voltage.  70 

 71 

2 .1  M o dels  72 
 73 

The healthy control neural network (Fig. 2) is modified in order to replicate the pathology 74 

present in PD. The synaptic currents flowing from the Substantia Nigra, Globus Pallidus 75 

Externa, and Thalamus are scaled down by a factor of two. Computationally, this is done by 76 

reducing the inhibitory synaptic current on the Striatum, Subthalamic Nucleus, and Globus 77 

Pallidus Internal, and reducing the excitatory synaptic current on the Cortex. Additionally, the 78 

synaptic currents flowing from the Subthalamic Nucleus are scaled up by a factor of two. 79 

Computationally this is done by increasing the excitatory synaptic current on the Striatum and 80 

Globus Pallidus Internal. The complete PD neural network model can be seen in Figure 3.  81 

                                                           
1 All parameters such as conductance values, equilibrium potentials, etc. are found in the Appendix. 



The healthy control neural network (Fig. 2) is modified in order to replicate the pathology 82 

present in MJD. The synaptic currents flowing from the Striatum and Subthalamic Nucleus 83 

are scaled down by a factor of three. Computationally, this is done by reducing the inhibitory 84 

synaptic current acting on the Globus Pallidus Externa, and reducing the excitatory synaptic 85 

current on the Striatum and Globus Pallidus Internal. The complete Machado Joseph’s neural 86 

network model can be seen in Figure 4. 87 

 88 
Figure 2 - Healthy control neural network 89 

 90 

 91 
Figure 3 - Parkinson’s Disease neural network 92 

 93 

 94 
 95 

Figure 4 - Machado-Joseph Disease neural network 96 
  97 



All three neural network models are evaluated from 0 to 500 milliseconds, with an external 98 

current of 6.52 μA/cm2. A fast Fourier transform is computed in MATLAB. The number of 99 

samples is found by computing the length of any of the voltage vectors. The sampling rate is 100 

calculated by dividing the number of samples by 0.5 seconds. The magnitude of the fast 101 

Fourier transform (FFT) is plotted against the relevant frequency range.  102 

 103 

2 .2  Da ta  co l l ec t io n  104 
 105 

A spike counter is implemented in all three models by recording the number of local maxima 106 

with voltages greater than 80 mV within 50 ms. Additionally, the mean interspike interval for 107 

each model is computed3. The spike threshold was set to 30 mV, as to discount any 108 

subthreshold activity. A random number generator selects 500 external current values between 109 

6.5 and 70μA/cm2. All three neural network models are evaluated for the same 500 external 110 

current values. The respective mean interspike intervals and number of spikes are used as 111 

feature vectors. The number of spikes feature is modified slightly to take into account the 112 

external current. The external current being tested is divided by the number of spikes value, 113 

thus giving the dynamic number of spikes feature used for classification. Of the 500 trials for 114 

each model, 70% of the feature-label pairs are used for training a logistic regression classifier 115 

[4]. Training and testing data is split using Scikit-Learn’s Train-Test-Split function. The 116 

remaining 30% of the feature pairs are classified via a binary classifier. The normal vs. 117 

Parkinson’s model is tested, the normal vs. MJD model is tested, and the Parkinson’s vs. MJD 118 

model is tested. The Train_Test_Split function splices the feature data randomly, yielding 119 

slight variations in classification results each time. Thus, each binary classifier is run five 120 

times and averaged.   121 

 122 

2 .3  Equa t io ns  123 
 124 

Eq. 1  125 

Eq. 2  126 

Eq. 3  127 

Eq. 4  128 

Eq. 5  129 

Eq. 6  130 

Eq. 7  131 

Eq. 8  132 

Eq. 9  133 

                                                           
2 This external current was experimentally determined to be the smallest current for which the Substantia Nigra shows 

continual firing. 
3 The mean interspike interval is computed via MATLAB function isi.m, created by BENG 260 teaching department. 



Eq. 10  134 

Eq. 11  135 

Eq. 12 αr_Inhibitory =5 136 

Eq. 13 βr_Inhibitory= 0.18 137 

Eq. 14 αr_Excitatory =2.4 138 

Eq. 15 βr_Inhibitory= 0.56 139 

Eq. 16 FeatureNew=IextFeature 140 

 141 

3  Results  142 

 143 

In order to understand the difference between the normal model, the Parkinson’s model, and 144 

the Machado-Joseph model, we analyzed the spiking frequency of the cortex neuron at external 145 

currents of 6.5 µA and 16.5 µA.   146 

 147 

3 .1  Externa l  current  in pu t  a t  6 .5  µA 148 
 149 

Serving as a control, the excitation of the Cortex neuron is first modeled under normal  150 

conditions, as seen in Figure 4. By comparing the normal model to the Parkinson’s model, it 151 

is evident there is an increase in spike count and frequency (Figure 5). However, when the 152 

normal model is compared to the Machado-Joseph model (Figure 6), there is a decrease in 153 

spike count and a similar frequency.  154 

 155 
 156 

Figure 5 - The spiking patterns associated with the excitation of the Substantia Nigra neuron and the 157 
Motor Cortex neuron at an external current of 6.5 µA in the normal model.  158 

 159 



 160 
Figure 6 - The spiking patterns associated with the excitation of the Substantia Nigra neuron and the 161 

Motor Cortex neuron at an external current of 6.5 µA in the Parkinson’s model. 162 

 163 

 164 
Figure 7 - The spiking patterns associated with the excitation of the Substantia Nigra neuron and the 165 

Motor Cortex neuron at an external current of 6.5 µA in the Machado-Joseph model. 166 
 167 

Figures 8-10 show the FFT of the normal, Parkinson’s and Machado-Joseph models. By 168 

looking at the frequency peaks, the normal model and the Machado-Joseph model have nearly 169 

identical peak locations, while the Parkinson’s model has peaks in different locations.  170 

 171 



 172 
Figure 8 - Fast Fourier Transform of the normal model at 6.5 µA. 173 

 174 
Figure 9 - Fast Fourier Transform of the Parkinson’s model at 6.5 µA. 175 

 176 

 177 
Figure 10 - Fast Fourier Transform of the Machado-Joseph model at 6.5 µA. 178 

 179 



3 .2  Externa l  current  in pu t  a t  16 .5  µA  180 
 181 

Now the same analysis is done at an external current of 16.5 µA, as seen in Figures 11-13. 182 

The normal and Machado-Joseph models are now nearly identical. The Parkinson’s model 183 

still has increased spike count. 184 

 185 
Figure 11 - The spiking patterns associated with the excitation of the Substantia Nigra neuron and the Motor 186 

Cortex neuron at an external current of 16.5 µA in the normal model. 187 

 188 

 189 
Figure 12 - The spiking patterns associated with the excitation of the Substantia Nigra neuron and the Motor 190 

Cortex neuron at an external current of 16.5 µA in the Parkinson’s model. 191 
 192 

 193 
Figure 13 - The spiking patterns associated with the excitation of the Substantia Nigra neuron and the Motor 194 

Cortex neuron at an external current of 16.5 µA in the Machado-Joseph model. 195 



The FFT of the three models at 16.5 µA result in Figures 14-16. Unlike at 6.5 µA, the Frequency 196 

spikes are now all at nearly identical locations. This makes it much more difficult to discern between 197 

the three different cases.   198 

 199 
Figure 14 - Fast Fourier Transform of the normal model at 16.5 µA. 200 

 201 

 202 
Figure 15 -  Fast Fourier Transform of the Parkinson’s model at 16.5 µA. 203 

 204 

 205 
Figure 16 -  Fast Fourier Transform of the Machado-Joseph model at 16.5 µA. 206 

 207 

  208 



3 .3  Sta t i s t i ca l  a na ly s i s  o n  nu mber o f  sp i ke s  a nd  in tersp i ke  i n terv a l  209 

 210 

3 .3 .1  Current  w e ig hted  f eatures  211 
 212 

Figure 17 shows the current-weighted feature space. Spatially, a class separation can be seen 213 

with regard to PD vs. healthy and PD vs. MJD. 214 

 215 

 216 
 217 

Figure 17 - Feature 1 vs. Feature 2 for Current- Weighted Features 218 
 219 

As seen from the table below, the model is able to classify normal vs. PD and PD vs. MJD with very 220 

high accuracy (Table 1). The model could not accurately classify the normal vs. MJD spiking 221 

patterns. Therefore, this paradigm cannot be used as a diagnostic tool for MJD. However, if a patient 222 

was displaying symptoms that could be indicative of PD or MJD, then knowledge of the current 223 

flowing into the Substantia Nigra and spiking features at the cortex could yield a diagnosis with up 224 

to 99.13% accuracy.   225 

 226 

Table 1 227 

 228 

Models Tested  

Classification Accuracy (%) 

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average 

Healthy vs. Parkinson’s 94.33 91.33 93.67 92.67 94.00 93.20 

Healthy vs. MJD 53.67 57.00 59.33 56.33 56.00 56.47 

Parkinson’s vs. MJD 99.67 99.00 99.00 99.67 98.33 99.13 

 229 

 230 

3 .3 .2  Current -b l ind  f ea tures  231 

 232 
Figure 18 shows the current-blind feature space. Spatially, a class separation can be seen between 233 

all three models. In Fig. 18 it appears that the normal and MJD features have little to no variance. 234 

One reason for this could be that the interspike intervals for the normal and MJD models are of a 235 

different scale than the interspike intervals of the Parkinson’s model. 236 

 237 



 238 
 239 

Figure 18 – Spike count versus isi mean.  240 

 241 

As seen from the table below, the model is again able to classify normal vs. Parkinson ’s and 242 

Parkinson’s vs. MJD with very high accuracy (Table 2). Similar to the current-weighted 243 

simulation, the model could not accurately classify the normal vs. MJD spiking patterns. This 244 

classification method had no knowledge of the external current coming into the Substantia 245 

Nigra. The classification accuracy is slightly less than when the features were recorded in 246 

relation to the external current (Section 3.3.1). However, the accuracy was still very high. Now 247 

if the patient’s cortex spiking features alone are measured, a diagnosis between Parkinson’s 248 

and MJD can be made with 98.67% accuracy.   249 

 250 

Table 2 251 

 252 

Models Tested  

Classification Accuracy (%) 

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average 

Healthy vs. Parkinsons 91.67 89.00 92.33 91.00 91.33 91.07 

Healthy vs. MJD 53.67 59.33 58.33 58.67 58.33 57.67 

Parkinsons vs. MJD 98.67 97.33 99.33 99.00 99.00 98.67 

 253 

 254 

4  Conclusions and future considerations  255 

 256 

Due to the similarity in symptoms, Machado Joeseph’s disease and Parkinson’s disease are 257 

often misdiagnosed in the early stages. Although both ailments affect similar areas of the brain, 258 

the changes that occur on the electrical connections cause the victims to behave differently in 259 

later stages. However, by the time the patient has reached these late stages, the patient may 260 

have been given an improper diagnosis. The goal of the experiments was to verify that PD and 261 

MJD can be properly diagnosed and differentiated from each other using the electrical output 262 

generated at the cortex. With a range of 97.33 to 99.66 percent accuracy in both blind and 263 

weighted features, PD and MJD can be distinguished from each other. The models are 264 

inconclusive when comparing MJD or PD to a healthy brain, however, the problem of 265 

differentiation, in this simple case only, has been addressed. 266 

 267 

The results suggest that the algorithm may be capable of differentiating PD from MJD in 268 

clinical cases. This would require an accurate measurement of potential at the substantia nigra 269 



and the cortex. Due to the limitations in current electrode technology, this model may not be 270 

suited. However, more complex models can be built for more accuracy in results or to analyze 271 

the reactions of individual neurons could be beneficial for diagnostic purposes.  272 
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Appen dix  285 

 286 

Parameter Value   

Membrane Capacitance (Cm) 1 μF/cm2 

Conductance of Potassium (gK) 36 mS/cm2 

Conductance of Sodium (gNa) 120 mS/cm2 

Conductance of Leaky Current (gL) 0.3 mS/cm2 

Conductance of GABA (gGABA) 0.5 mS/cm2 

Conductance of Glutamate (gGLU) 0.2 mS/cm2 

Equilibrium Potential of Potassium (EK) -12 mV 

Equilibrium Potential of Sodium (ENa) 115 mV 

Equilibrium Potential of Chloride (ECl) -70 mV 

Equilibrium Potential of Leaky Current (EL) 10.613 

T Equation  T=TMax1+ e(-(VPre-VP)/KP)) 

TMax 1.5 mM 

VP 77 mV 

KP 5 mV 

 287 


