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Abstract 6 

Recent work has suggested that dendrites act as a key organization unit of 7 
pyramidal neurons, integrating local inputs to generate complex neural 8 
response properties. In computational models of cortical networks, 9 
incorporating the integrative properties of dendrites, for instance by 10 
directing the landing of synapses to particular compartments on the 11 
dendritic arbor, and can increase the accuracy of a model at describing the 12 
input-output functions of realistic neurons. In this study, we sought to 13 
determine how the concentration of local inhibitory synapses on either the 14 
proximal or distal portion of dendrites of primary visual cortex neurons 15 
would modify the gain of the network. We used a model of exponential 16 
integrate and fire neurons to simulate the network, and found that landing 17 
of inhibitory synapses on the proximal portion of the dendrite resulted in an 18 
increased network gain relative to distal landing. These observations 19 
suggest that the spatial patterning of synapses is an essential component in 20 
generating cortical models that accurately capture biological data.  21 

 22 

1 Introduction/Background 23 

 24 

1 .1  Co mputa t io na l  ro le  o f  dendr i t e s  i n  neura l  n e tw o rk mo de l s  25 

Computational models of neural networks are a useful way to gain insight into the properties 26 

of biological neural networks. An advantage of using simulations is that they can be used to 27 

construct and observe large-scale networks of neurons, but generally require less time and 28 

expense than experimental techniques such as electrophysiology. However, one limitation of 29 

using computational simulations to study neural networks is that the models often must make 30 

simplifying assumptions about the properties of biological neurons. Simplifications can 31 

often increase the computational efficiency of a neural networks model, but may limit its 32 

biological applicability. 33 

In models of cortical regions such as visual cortex, a common simplifying assumption is the 34 

reduction of each cortical pyramidal neuron to a single compartment. In models of this kind, 35 

each neuron is treated as a point-like node, and the output of a neuron is modeled as either a 36 

linear, nonlinear, or thresholded function of its summed inputs (Vanni et al., 2015). However, 37 

recent work has suggested that the transfer functions of real neurons are more accurately  38 

described by complex functions related to the structure of neurons, particularly its dendritic 39 

morphology. For instance, the efficacy of synaptic transmission to a neocortical pyramidal 40 

neuron is partially determined by where it lands on the dendritic tree (Williams & Stuart, 41 



2002). Furthermore, evidence suggests that dendritic compartments can act as independent 42 

units for signaling and processing, and may serve as the basic units for integrating synaptic 43 

input (Branco & Hauser, 2010). These observations suggest that the applicability of cortical 44 

network models can be significantly improved by the incorporation of dendritic 45 

compartments with biophysically accurate properties.  46 

 47 

1 .2  Aniso tro p ic  la n ding  in  a  mo de l  o f  v i sua l  co r tex  48 

A recent paper from Heikkinen and colleagues demonstrated the explanatory power of a 49 

model that incorporates dendritic computations (Heikkinen et al., 2015).  This group used 50 

compartmental neurons to generate a model of primary visual cortex, and manipulated the 51 

spatial position of synaptic landings on the dendritic compartments of neurons. Under a 52 

variety of synaptic configurations, they simulated activity in the network in response to a 53 

visual stimulus, and recorded both the synaptic conductance and spiking output of neurons, 54 

in order to measure, respectively, the input and output tuning functions of the neurons. It was 55 

found that when feedback from extrastriate visual cortex was concentrated on the distal 56 

branches of dendrites, the input and output functions of model V1 neurons could be 57 

effectively separated, and were close to those predicted from empirical data.  This result 58 

suggests that the anisotropic landing of feedback synapses on V1 neurons can have a 59 

significant effect on neural tuning, and raises the question of how other manipulations of 60 

synaptic connectivity in this network might modulate its output properties.  Specifically, it 61 

has not been conclusively determined how the landing of local inhibitory synapses might 62 

modify the output of this network. 63 

 64 

1 .3  Go a l s /o utco mes  o f  th i s  s tudy     65 

The goal of this study was to examine how anisotropic landing of local inhibitory synapses 66 

on the apical dendrites of model neurons affects the response properties of primary visual 67 

cortex. To achieve this, we generated a model of primary visual cortex, intended to capture 68 

the computational properties of the compartmental model described above (Heikkinen et al., 69 

2015). Using exponential integrate and fire neurons, we were able to generate realistic 70 

patterns of spiking behavior. We also examined the response properties of individual 71 

compartmental neurons, and recovered several key observations from electrophysiology. We 72 

then manipulated the landing of inhibitory synapses on V1 pyramidal neurons and examined 73 

the output of the network. It was found that concentration of inhibition in the proximal 74 

dendrites resulted in lower mean activity with an increased signal to noise ratio (SNR), while 75 

inhibition in the distal dendrites resulted in greater mean activity with a lower SNR.  76 

 77 

2 BRIAN neuron s imulator  78 

To implement our model we used the neuron simulator platform BRIAN (Goodman and 79 
Brette, 2008), using both built-in functionality and additions.  80 

Code for the model is made available with this manuscript 81 

 82 

3 Exponential  integrate and f ire model  83 

The exponential integrate and fire (EIF) neuron model approximates neural behavior by 84 
reducing the dynamic system to a single differential equation.  This makes it less 85 
computationally intensive to model many neurons at once.   86 

 87 

3 .1  EIF neu ro n  s i mula t io n  88 

There are three components to the simulated neuron’s behavior. The first is passive RC 89 
neuron behavior around the resting membrane potential VL.  90 

The second is exponential behavior around the threshold potential VT, where the neuron will 91 



entire a regime where the membrane potential rapidly increases to infinity. For the purposes 92 
of modeling a neuron’s behavior, at some cut-off potential VCut-off the membrane potential is 93 
reset to near the resting potential, a value known as VReset, and the behavior continues. 94 

The third component is the summation and integration of the synaptic inputs, in the form of 95 
multiple currents Idendrites. The equation for the EIF model is: 96 

𝑪
𝒅𝑽

𝒅𝒕
= 𝒈𝑳(𝑽𝑳 − 𝑽) +  𝝋(𝑽) +  ∑ 𝑰𝒅𝒆𝒏𝒅𝒓𝒊𝒕𝒆𝒔(𝒕) 

𝝋(𝑽) = 𝒈𝑳∆𝑻𝒆𝑽−𝑽𝑻 ∆𝑻⁄  

where 𝜑(𝑉) is the nonlinear spiking current near threshold, ∆𝑇 is the spike slope factor, 𝐶 the 97 
membrane capacitance and 𝑔L the leak conductance 98 

 99 

3 .1 .1  Pa ra meters  o f  the  EIF neuro n  100 

The parameters for the V1 excitatory pyramidal cells, as taken from Heikkinen et al. 2015, 101 
are as follows: 102 

Table 1: V1 EIF paramters 103 

 104 

Passive Properties 

C 200 pF Membrane capacitance 

gL 8.4 nS Leak conductance 

EL -58 mV Leak (rest) potential 

EIF properties   

VT -38 mV Threshold potential 

VR -55 mV Reset potential 

DeltaT 2 mV Threshold slope factor 

Vcut -20 Cut-off voltage for action 
potential 

Differential equation 

dv/dt = (gL*(EL – v) + gL*DeltaT*exp((v – VT)/DeltaT) + I) / C 

 105 

3 .2  EIF s i ng le  neuro n  beh a v io r  106 

A single EIF neuron with a constant current injection shows spiking behavior, with return to 107 
rest. All parameters taken from the V1 pyramidal cells as outline above.  108 

 

Figure 1: Single EIF neuron with 0.6 nA of injected current.  109 

 110 



Near to threshold there is unstable behavior, as illustrated by the final spike after  the injected 111 
current has ended. Because the membrane potential is in the exponential regime the potential 112 
does not return to baseline and instead eventually fires a delayed spike.  113 

3 .3  EIF neu ro n  ne tw o rk  114 

To examine the behavior of an EIF neuron in a network, we set up a simple test, with 25 115 
input neurons synapsing onto the soma, with a mixture of both excitatory and inhibitory 116 
synapses. The parameters for such synapses are: 117 

Table 2: V1 EIF synaptic parameters 118 

 119 

Synaptic parameters 

EAMPA 0 mV Reversal potential of the AMPA 
currents 

TAMPA 0.7 ms Time constant of GAMPA decay 

GAMPA 1.7 nS Peak conductance for AMPA synapse 

EGABA -75 mV Reversal potential of the GABA 
currents 

TGABA 7 ms Time constant of GGABA decay 

GGABA 1.2 nS Peak conductance for GABA synapse 

 120 

The behavior of the network is as illustrated in the figure. With many excitatory inputs the 121 
post-synaptic EIF neuron integrates the depolarizations until approaching threshold. After 122 
spiking the EIF neuron resumes integrating the inputs. If the input neurons are correlated in 123 
their spike timing the EIF neurons summates appropriately and may spike more than if the 124 
individual inputs were random and had thus decayed.  125 

The addition of a small number of inhibitory cells to the network is sufficient to suppress 126 
spiking to the same inputs that previously evoked spiking.  127 

 128 

 



 

Figure 2: EIF neuron network. Top: the spiking behavior of the post-synaptic EIF neuron 129 
and an example input neuron. Middle: record of the synaptic currents underlying the 130 

membrane potential. Bottom: spike raster of the input neurons, each reciving a different 131 
injected current, those making both excitatory and inhibitory synapses.  132 

 133 

4 Spatial  neuron 134 

In order to directly examine the integrative properties of dendrites in pyramidal neurons, we 135 
used the BRIAN neural simulator to construct spatial neurons having six compartments. In 136 
keeping with the methods of Heikkinen and colleagues, we used four apical compartments, 137 
one basal compartment, and one somal compartment. We used a somal diameter of 30 138 
microns, and total lengths of 100 and 400 microns for the basal and apical dendrites, 139 
respectively.  140 

 141 

4 .1  Pa ss iv e  deca y  o f  EPSPs  142 

To examine the passive conductance properties of this compartmental model, we stimulated 143 
the neuron with synaptic input to generate EPSPs. We directed this synaptic input to one 144 
compartment at a time, and examined the voltage time course of the EPSP in the soma. As 145 
shown in Figure 3, we found that when the synaptic input was directed to the soma, EPSP 146 
amplitude was largest. As the site of synaptic input moved further from the soma , either to 147 
the apical or basal dendritic compartment, the EPSPs were similar in shape but lower in 148 
amplitude. The decay in amplitude with distance was roughly exponential. This attenuation 149 
in EPSP amplitude with distance from the soma is an accordance with experimental 150 
observations from cortical pyramidal neurons (Williams & Stuart, 2002).  151 

 152 

 153 



 154 
Figure 3. Top: The location of each of the 6 compartments in an example spatial neuron, 155 

with soma at x=0. Bottom: Synaptic activity was used to generate EPSPs. A synaptic input 156 

was directed to one compartment of the neuron at a time, moving from left to right along the 157 

neuron, and voltage was recorded at the soma. 158 

 159 

4 .1  M o de l ing  the  pa ss iv e  deca y  o f  EPSPs  160 

The above observations support an exponential function for the decay of EPSP amplitude 161 

with distance from the soma. In order to model this decay, we calculated a space constant for 162 

the spatial neuron described above. We then calculated the amount of attenuation predict ed 163 

for synaptic inputs on the distal, proximal, and somatic compartments according to the 164 

following equation: 165 

𝒂 = 𝒆−𝒙/𝝉
- 166 

Where x is the distance of the input from the soma, and tau is the space constant (tau = 0.629 167 

mm). This gave a multiplier for each compartment: 168 

 169 

Table 3: Spatial neuron parameters 170 

 171 

 Soma Proximal Distal 

x 0 um 100 um 400 um 

a 1 0.85 0.53  

 172 

Then, when building our network, we used these multipliers to scale the effect of each 173 

synaptic event, depending on which compartment the synapse was directed to.   174 

 175 

5 Constructing a model  of  visual  cortex  176 

 177 

5 .1  Ana to mica l  co nnec t io ns  o f  v i sua l  co r tex  178 

Primary visual cortex (V1) is composed of several feedback and feedforward circui ts that 179 

form the classical representation of visual space. Each layer maintains a topography, and has 180 



connections to and from areas with similar topography.  181 

Visual information enters V1 from the LGN in feedforward projections to excitatory 182 

pyramidal cells. These excitatory neurons in V1 send feedforward projections to extrastriate 183 

pyramidal cells, and collaterals to local V1 excitatory and inhibitory cells.  184 

The extrastriate neurons send feedback projections to V1, and inhibitory interneurons in V1 185 

also feedback onto the pyramidal cells. The specificity of these projections, and the relative 186 

spatial spread of connections has been detailed in anatomical studies (Nauhaus et al., 2 008) 187 

 188 

 

Figure 4: Schematic of visual cortex network. Taken from Heikkinen et al., 2015. 189 

 190 

Our model incorporates a single-layered V1 with LGN feedforward neurons, reciprocal 191 

excitation to extrastriate feedback neurons, and local reciprocal excitation and inhibition.  192 

Due to computational constraints, we modeled the connections of V1 with only a fraction of 193 

the neurons modeled in Heikkinen et al. 2015. There are 400 V1 excitatory neurons, 400 194 

LGN neurons, 100 extrastriate neurons, and 100 V1 inhibitory neurons 195 

 196 

5 .2  La tera l  inh ib i t io n  in  t he  mo de l  197 

The lateral inhibition from local GABAergic inhibitory neurons is modeled as having a 198 

spatial extent of about 1 mm. However, to produce the center-surround suppression of 199 

activity seen in cortex, we introduced a lack of inhibitory connections for completely 200 

overlapped spatial populations, as schematized in the following connection diagram 201 

  202 



 

Figure 5: Schematic of local inhibitory synaptic connections in V1 203 

 204 

5 .3  Extra s t r ia t e  Feedba c k  co nnec t io ns  in  the  mo de l  205 

The extrastriate feedback connections have greater spatial spread than the feedforward 206 

connection from LGN to V1 (roughly 1:1), feedforward from V1 to extrastriate 207 

(convergence, 4:1) or the lateral excitation and inhibition of V1. The extrastriate excitation 208 

has a broad spatial extent, as schematized by the diverging connections and large number of 209 

synapses. 210 

 211 

 

Figure 6: Schematic of extrastriate feedback connections in V1 212 

 213 

6 Impact of  the synapse location on network behavior 214 

The innovation of this model is the ability to change the effective location of the synapses, 215 

as well as the convergence and divergence of network nodes. Thus we can model how the 216 

network behaves if the synapses land on different locations in the dendrites. Specifically, 217 

changing from a proximal dendrite to a distal dendrite can change the integration in the 218 

circuit. 219 

As described in Section 4.1, we modeled the effect of synapses on different compartments by 220 

computing the space constant of the exponential decay of EPSP amplitude with distance 221 

from the soma. Therefore, synapses on more distal regions of the dendrite would have a 222 

lower efficacy than synapses on more proximal regions.  223 

 224 



6 .1  Lo ca t io n  o f  inh ib i to ry  sy na pses  cha n g es  ne tw o rk g a in  225 

Moving the site of local inhibition from a proximal dendrite to a distal dendrite reduces the 226 

absolute effect of inhibition in the circuit.  227 

For example, if the circuit is fed a random background of activity from LGN inputs, except 228 

for a correlated area of activity (spatial extent ~5 mm) across 30 LGN neurons, the activity 229 

throughout the circuit reflects this input. Specifically, there is broad spiking activity 230 

throughout V1 and extrastriate neurons, while peak spiking occurs amongst the downstream 231 

neurons with the same spatial position as the 30 LGN neurons.  232 

If the inhibitory synapses are on the proximal dendrite, the effect of inhibition on the 233 

network is stronger, and thus network activity as a whole is reduced (mean spike rate: 14.7 234 

Hz proximal; 17.4 Hz distal). However, the signal to noise ratio is improved due to the 235 

reduced network gain (SNR 3.39 with proximal input). If the synapses are on the distal 236 

dendrites, network activity, including the uncorrelated activity, is greater. There fore there a 237 

lower SNR (3.14 with distal input).  238 

 239 

Proximal inhibitory synapses 

 

Distal inhibitory synapses 

 

Figure 7: Effect of distal vs. proximal inhibitory synapses on network gain. Top: spike raster 240 
of the V1 excitatory neurons. Middle: spike raster of the extrastriate excitatory neurons. 241 

Bottom: spike raster of the local V1 inhibitory neurons. Correlated LGN input occurs 242 
amongst V1 neurons 100-130. 243 

 244 

7 Discussion and Future Directions  245 

As described above, we demonstrated that manipulating the spatial organization of  local 246 

inhibitory synapses on the apical dendrites of pyramidal neurons in a model of V1 modified 247 

the gain of the network response. Specifically, concentration of synapses  at the proximal 248 

region of dendrites resulted in lower overall activity, accompanied by a higher SNR, while 249 

concentration of synapses at the distal region resulted in a lower SNR. Computationally, this 250 

suggests that the role of local inhibitory synapses may differ depending on how close to the 251 

soma they land. For instance, local inhibition to the proximal portion of the apical dendrite 252 

may be used to limit the spread of cortical responses, by suppressing responses in neurons 253 

that are only weakly excited. Conversely, local inhibition to the distal portion results in less 254 

suppression overall, which could be useful for generating large, nonspecific responses to 255 

stimuli. 256 

There are several aspects of this model which could be improved and/or extended in future 257 

implementations. One limitation is that we did not explore the interactions between multiple 258 

synapses on a particular portion of the dendrite. For instance, the response to multiple 259 

simultaneous synaptic inputs is often not a linear sum of the responses to  the inputs alone, 260 



and it would be interesting to investigate how nonlinearities in the responses to multiple 261 

inputs could impact the integrative properties of this model. Another potential way to extend 262 

this model would be to place synapses at intermediate distances along the dendrite, and look 263 

at how the response properties differ when synapses are directed to an intermediate distance 264 

rather than the most proximal or distal compartment. Finally, it would be informative to 265 

examine how synapse configuration the response properties the other neurons in the model. 266 

For instance, we could examine the gain of responses in extrastriate neurons for proximal 267 

versus distal landing of synapses from V1.     268 

Furthermore, it would be interesting to adapt this model for o ther cortical regions, such as 269 

motor cortex or prefrontal cortex. It is likely that some of the same principles would apply, 270 

however, introducing inputs and outputs from a larger range of cortical regions could 271 

introduce new patterns of dendritic integration. Future work will be necessary to determine 272 

how synapse landing configurations can modify the behavior of more complex networks.  273 

 274 
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