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Abstract

In neuro-circuits, the flow of information is regulated by a diverse population of inhibitory
neurons. Previous studies(Bloodgood (2013), Lin (2008)) have shown that NPAS4, the
activity-dependent transcription factor, regulates the number of inhibitory synapse and func-
tions in the cell.

When information is travelling through the hippocampus, two kinds of perisomatic inhibitory
interneurons, PV(Parvalbumin) basket cell and CCK(Cholecystokinin) basket cell, are re-
cruited to transfer inhibition signals to the pyramidal cell(Freund (2012)). Previous experi-
ments(Bartos (2012)) have shown that the output signaling properties of those two kinds of
cells are different. While the output signal of PV basket cells is fast recruited, uniformed and
with high frequency, that of CCK basket cells is slowly recruited, asynchronous, fluctuating
and with less timed inhibitory output.

Our study focuses on modeling the whole mechanism of how NPAS4 affects the informa-
tion flow in the hippocampus. Specifically, the genetic circuit approach is applied to model
the recruitment of PV/CCK basket cells regulated by NPAS4. Meanwhile, the signal that is
transferred inside the pyramidal cell(action potential spikes) is modeled by using the neural
circuits.

As the result, we created a model which is able to recreate the spiking pattern of both basket
cell by taking account of the interneural inhibition/excitation, as well as the regulation of
NPAS4.

Keywords: Neuro-circuits, Inhibition Dynamics, Hippocampus, Computation, Parvalbumin-
containing basket cells, Cholecystokinin-containing basket cells, NPAS4, Genetic-circuits
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1 Introduction

The hippocampus(Figure 1.), an extension of the cerebral cortex and part of the limbic system in

the brain, is known to play a major role in several key functions. These include spatial learning

and awareness, navigation, episodic/event memory, and associational recollection. Damage to the

hippocampus, such as that due to Alzheimer’s disease, results in memory loss and disorientation.

The hippocampus is composed of three primary fields: the dentate gyrus, and the CA3 and CA1

pyrimadal cell fields. The flow of information is primarily unidirectional, as shown in Figure 2,

with the entorhinal cortex as the interface between the hippocampus and the rest of the cerebral

cortex.

Figure 1: Different Regions in Hippocampus.

Within the CA1 region, the pyramidal cell field receives input from basket cells containing par-

valbumin (PV) and cholecystokinin (CCK) (Figure 3.), and these cells are recruited by excitatory

synaptic inputs from the pyramidal cells(Freund (2012)). Although PV and CCK basket cells

are morphologically similar(Bartos (2012)), their synaptic regulation and effect on pyramidal cells

is different. PV and CCK cells receive GABA-ergic inhibition, but CCK cells have double the

GABA inhibition compared to PV cells. Additionally, both basket cells receive glutamatergic

feed-forward excitation, but the CCK cells have one-third the amount of Glu excitation compared

to PV cells. These and other minor differences result in different firing patterns between the two

basket cell types. PV cells generate high-frequency trains of action potentials, discharge single

action potentials phase-locked to fast network oscillations, and provide fast, stable and timed in-

hibitory output onto their target cells. In contrast, CCK cells discharge at moderate frequencies
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Figure 2: The hippocampal Network: The hippocampus forms a principally uni-directional net-

work, with input from the entorhinal cortex (EC) that forms connections with the dentate gyrus

(DG) and CA3 pyramidal neurons via the perforant path (PP). CA3 neurons also receive input

from the DG via the mossy fibres (MF). They send axons to CA1 pyramidal cells via the Schaffer

collateral pathway (SC), as well as to CA1 cells in the contralateral hippocampus via the associ-

ational commisural (AC) Pathway. CA1 neurons send axons to the subiculum (Sb) and the main

hippocampal output back to the EC, forming a loop.
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Figure 3: Two kind of basket cells(PV, CCK), with the piramidal cell in the CA1 region of

Hippocampus.

with single action potentials weakly coupled to the phases of fast network oscillations and generate

an asynchronous, fluctuating and less timed inhibitory output.

The dynamics of the pyramidal neurons, the PV and CCK basket cells, and other neuronal synap-

tic activity in the hippocampus are complex and regulated by various transcription factors. One

of those transcription factors is NPAS4, which affects the excitatory and inhibitory balance in

neural networks such as the hippocampus.The NPAS4 will be expressed when the neuron is stim-

ulated by KCl(spikes generated)(Lin (2008)). When NPAS4 is expressed in excitatory neurons,

it increases the number of binding inhibitory synapses. Similary, when NPAS4 is expressed in

inhibitory neurons, it increases the effect of the binding excitatory synapses (Figure 4.)(Spiegel

(2014)). The role of NPAS4 in the CA1 cell field of the hippocampus is a negative feedback loop:

hippocampal neuronal activity induces the NPAS4 expression, while expression and activity of

NPAS4 inhibits the neuronal activity. This interaction will be explored in the network models of

this study.
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Figure 4: The function of transcriptional factor NPAS4

2 Methods

2.1 Manipulation of neuronal spiking patterns and interactions

2.1.1 Spiking pattern model

A model (Izhikevich (2003)) which could manipulate the spiking pattern is adopted. The formula

are: 
dv
dt

= 0.04v2 + 5v + 140− u+ I

du
dt

= a(bv − u)

if v == 30mV , then v ← c, u← u+ d (update rule)

Where v is the membrane current and u is the recovery variable. Comparing to the classical

Hodgkin-Huxley model(Hodgkin (1952)), the model is reduced into a dynamic system with two

differential equations, one update rule and 5 parameters. Where the parameters are:

a :The time scale of the recovery variable u. Smaller values result in slower recovery, and so, lower

spiking frequency;

b :The sensitivity of the recovery variable u to the subthreshold fluctuations of the membrane

potential v. Changing the b value would mainly manipulate the shape of the spiking pattern as

well as the threshold of generating spikes.

c: After spike reset potential.

d: Describes after-spike reset of the recovery variable u caused by slow high-threshold potassium
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Figure 5: Trajectory of v vs. u when spikes are generated. Where apv = 0.1, bpv = 0.25, cpv =

−65, dpv = 0.05. With this group of parameter, the system would be unstable but reset to a

resting point when the membrane voltage v reaches a certain value (30mV is the plot), the reset

procedure is showing as the straight trajectories from black dots to red triangles.In the end, the

whole system is able to oscillate, which is shown as circles in the plot.

and sodium ion conductance, the lower the value is the faster the recovering will be;

I: External current.

It is obvious that,by this model, the two differential equations are creating instability(which cause

the membrane voltage leaving the resting potential), while the update rule would keep the system

stable. In this case, the typical Hopf bifurcation in Hodgkin-Huxley model is actually shown as

the bifurcation of unstable(Figure 5.)/stable(Figure 6.) with an update rule.

By adopting this model, we could create different spiking frequency for the two kinds of bas-

ket cells(Figure 7). While since CCK is having a irregularly slow spiking frequency, while the

single neuron model is only able to generate regular pattern. The irregularity would be caused by

the external surrounding, which would be introduced in the next section.
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Figure 6: Trajectory of v vs. u when spikes are not generated. Where apv = 0.1, bpv = 0.1, cpv =

−65, dpv = 0.05, here the trajectory will reach a stable point(u = 7.3, v = −72mV ).

2.1.2 Synaptic current and interaction between neurons

According to the theory of synaptic inhibition(Koch (1999), Destexhe (1994)), when a spike is

generated in the pre-synaptic neuron, a excitatory/inhibitory post synaptic current would be gen-

erate forward the post-synaptic neuron according to the synapse is excitatory or inhibitory. While

the excitatory/inhibitory post synaptic current(EPSC/IPSC) is generated according to the con-

ductance.

While according to the shape of the post synaptic current, we could simplify the model by lin-

earizing it: from the time that spike is generated in the pre-synaptic neuron the EPSC will be a

linear rise from 0 to Isyn,max(fall from 0 to −Isyn,max for IPSC) in a fixed time noted as tdock, while

after the absolute value of EPSC/IPSC reaches the maximum, it will start to fall to 0 in another

fixed time period noted as tundock.

By using this simplified format of the EPSC/IPSC, we are able to simulate the neuron interac-

tions(Figure 9 and 10.).
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Figure 7: Simulation of PV/CCK basket cells’ spiking patterns. Parameters for both basket cells:

apv = 0.1, bpv = 0.25, cpv = −65, dpv = 0.05; acck = 0.02, bcck = 0.2, ccck = −65, dcck = 2; The

external current on two basket cells are both Iext = 5µA after 50ms.
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Figure 8: Simplification of modeling the synaptic effect

Figure 9: Excitatory effect from the pre-synaptic neuron(Vpre) to the post-synaptic neuron(Vpost).

In this scenario, only the pre-synaptic neuron receives the external current which is able to generate

spikes(red solid line). With the excitatory synapse channel generating excitatory post synaptic

current(magenta dash line), and stimulate the post-synaptic neuron(blue solid line).
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Figure 10: Inhibitory effect from the pre-synaptic neuron(Vpre) to the post-synaptic neuron(Vpost).

The external current providing on pre-synaptic neuron is larger than on post-synaptic current,

while by varying the value of Isyn,max would cause different strength of inhibition.

2.2 External Current provided on both basket cells.

2.2.1 Random Coupling neuronal network

The principle model is graphically presented as the brown circled part in Figure 11. In this model,

we have an excitatory/inhibitory coupled network together with excitatory/inhibitory synapses for

synaptic currents and NPAS4 expression for upper regulation. After a random external current is

introduced, both excitatory and inhibitory neurons fire to affect the corresponding synapses. Under

the regulation of NPAS4 expression, these synapses provide synaptic currents to the post-synaptic

PV and CCK cells. On the other way around, the magnitude of the synaptic currents conversely

affects the firing patterns of the excitatory/inhibitory neurons. The later further regulates the

expression of NPAS4 transcription factor.
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Figure 11: The random external current input provided by external neurons of the basket cells.

First, to construct an excitatory/inhibitory network, the random coupling model is applied. Ran-

dom coupling describes the parallel interactions between the neurons to affect the general synaptic

current (Isync) provided to the post-synaptic cell. Here, we use a randomly generated matrix called

Matrix of Synaptic Connection Strength (MSCS) to realize this random coupling. MSCS is a ma-

trix of pairwise coupling between all the neurons in the network with columns as the neurons that

exert the coupling influence and with rows as the neurons that receive the influence. If a neuron

is excitatory, it will have positive connection strength on the other neurons ranging from 0 to

1. If a neuron is inhibitory, then it will have negative connection strength on the other neurons

ranging from -1 to 0. A neuron will have a strength of 0 on its own. The connection strength of

inhibitory neuron is usually larger than that of excitatory neuron on average (Izhikevich (2003)).

For more clearance, Table ? provides a toy example of a 3-by-3 MSCS. This matrix represents a

network formed by 2 excitatory neurons and 1 inhibitory neuron and is constructed in accordance

to all the criterion mentioned above. With MSCS constructed, it can be applied into an existing

algorithm (ref) to generate the resulting Isyn.
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Table 1: Example of a 3-by-3 randomly couple neuron network

Post/Pre N1(Excitatory) N2(Excitatory) N3 (Inhibitory)

N1(Excitatory) 0 0.4282 -0.6624

N2(Excitatory) 0.3354 0 -0.7662

N3 (Inhibitory) 0.2946 0.3614 0

To evaluated the effect of a random coupling neural network, two systems each with 900 excitatory

neurons and 100 inhibitory neurons are constructed. With one system served as a control, the

MSCS is applied to the other one. Figure ? shows the resulting firing neurons and Isyns generated

from the two systems. The dotted map describes which neuron fires along time. The plots on

the left are from the uncoupled neural network. We can see the neurons fire randomly and the

resulting Isyn vibrates without any patterns. The plots on the right are from the randomly coupled

neural network. When the neurons are randomly coupled, the resulting Isyn spikes periodically,

showing the effect of random coupling.

We also investigate different neural networks by varying the numbers of coupled excitatory and

inhibitory neurons. The results are presented in Figure 13. Figure 13 shows that as the ratio of

the amount of excitatory neurons to inhibitory neurons decreases, the firing patterns become more

randomized and the resulting Isyn becomes more asynchronous. As a result, different combinations

of excitatory and inhibitory neurons can produce different Isyns. We are able to use this property

to model different types of cells like PV and CCK and to get cell-specific Isyn.

2.2.2 Adding NPAS4 Regulation

Next, the transcription factor NPAS4 regulation is integrated into the model. The general effect

of NPAS4 regulation is illustrated in Figure 4. When NPAS4 is expressed in an excitatory neuron,

it will increase the number of inhibitory synapses that bind to the host excitatory neuron. When

NPAS4 is expressed in an inhibitory neuron, it will level up the effect of inhibitory synapses that

12



Figure 12: (Left)Control group without any coupling effect between neurons; (Right)Neuronal

network with random coupling effect

Figure 13: Comparison between the spike patterns and output currents of the neuronal network

with different number of excitatory/inhibitory neurons

bind to the host inhibitory neuron. In our model, we realize NPAS4 regulation by modifying the

Matrix of Synaptic Connection Strength. First, we set NAPS4 is expressed if and only if a neuron

is fired (Lin (2008)). In the model, neurons are always checked if they are fired or not in every

time step. If a fired neuron j is an inhibitory one, then in the connection strength matrix M ,

13



M(i, j) will be incremented where i represents all the excitatory neurons. If a fired neuron k is

an excitatory one, then M(i, k) will be decremented where i represents all the inhibitory neurons

here. For the other neuron m that is not fired, M(i,m), where i represents all the neurons, will

be reset to the initial value equal to where it is first randomly generated. As a result, the MSCS

is updated in every time step based on the expression of NPAS4 and NPAS4 is further regulated

by the firing of excitatory and inhibitory neurons.

Figure 14 shows a comparison between the two currents generated from a NPAS4 regulated system

and a control system. While the non-regulated current generates organized spiking patterns, the

NPAS4-regualted current keeps vibrating around a stable level. This little vibration of the current

illustrates the balancing effect from the NPAS4 regulation.

Figure 14: The effect of the NPAS4 regulation on random coupling neuronal network
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Figure 15: Synaptic current generated by the random coupling network serving as the external

current on PV(Red)/CCK(Blue) basket cells

3 Results

3.1 External current providing on PV/CCK basket cells from random

coupling neuronal network

According to the different amount of excitatory and inhibitory synapses binding on the PV/CCK

basket cells, we generated the synaptic current by assigning the NPAS4 regulating random cou-

pling neuronal network 1500 excitatory neurons, 100 inhibitory neurons on PV cell, while 500

excitatory, 200 inhibitory on CCK.

As the result, we got two different synaptic current serving a the external current providing on

both basket cells(Figure 15). The current providing on PV cell is having a higher amplitude(11µA

vs. 2µA) and more stable than on CCK cell. Potentially, since the synaptic current providing on

PV cell is more stable, PV cell will be able to generate spikes with more stable frequency. This is

close to the result of the experimental studies that external current providing on PV cell is around

7 times as large as on CCK cell(ref.).

After generating the synaptic current, the whole schematic of the model(shown in Figure. 16)

could be simplified into the one shown in figure.
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Figure 16: Simplified schematic of the model after working out the synaptic current providing on

the two basket cells.

3.2 The spikes generated in PV/CCK basket cells

As shown in Figure 17, after generating the synaptic current providing on both basket cells, we

added a stable external current on the pyramidal cell. As the result, we are able to generate the

spiking patterns of CCK(red) basket cell, PV(blue) basket cell, and pyramidal(green) cell. The

firing pattern matches the observation in the paper(ref.) saying that the PV cell is generating

non-accommodating spiking pattern while CCK is generating accommodating spiking pattern.

Figure 17: The spikes in PV/CCK basket cells and in pyramidal cell.
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4 Conclusion

In this study, a model which could qualitatively recreate the spiking pattern in PV cell and CCK

basket cell is built. Moreover, by using the random coupling neuronal network model, the model

gives an explanation of how the transcription factor NPAS4 affect neural activity.

The model creates a good fundamental structure for studying the perisomatic neural activity in

a micro scale. Based on our study, more biological factors such as the neuron structure, dendrite

dynamics, complexity of different ion channels could be taken account.

SUPPLEMENTAL MATERIALS

The whole model is written with Matlab,in the compressed folder ’BENG260 Proj.zip’.
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