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Abstract

Ring attractors are a class of recurrent networks schematized as a ring of neurons
whose connectivity depends on their tuning preferences. They have been used to
model various circuits in the brain, most notably cells that encode head direction.
A ring attractor sustains a bump-like activity pattern with infinite time constant,
which can be updated by external input and internal dynamics. For head direction
cells, a ring attractor circuit would stably represent the current head direction, with
peak activity changing in response to inputs from the vestibular system describing
angular head velocity. We constructed different models for head direction cells,
including ring attractor models, using several distinct network structures and
explored their dynamics.

1 Introduction

Head direction cells in the central nervous system fire whenever the animals faces towards a particular
direction and therefore maintain an internal representation of the head direction. A good head
direction representation system must satisfy several requirements: 1) It must be unique as an animal
can face only one direction at a given time; 2) it has to be persistent since animals can internally keep
track of their head direction without external sensory input (for example in total darkness); 3) and it
must allow updating that matches the heading changes expected from the animal’s movements (Seelig
and Jayaraman 2015, Kim, Rouault et al. 2017). Ring attractors are a class of recurrent networks
made up of neurons with orientation tuning, meaning that they fire to represent a specific preferred
orientation. These neurons are arranged in an abstract ring of orientations, and form connections
with each other based on the relationship between their preferred orientations. Ring attractors have
been proposed as a network structure underlying the mechanism of head direction representation
in the brain (Knierim and Zhang 2012). In this project, we simulated a ring attractor model for
head representation and tested whether the model can recapitulate the three key features of the head
direction representation system.

2 Methods

2.1 Simulation of the symmetric ring attractor

2.1.1 Design of the symmetric ring model

We first considered a one-dimensional attractor network consisting of 500 of neurons whose preferred
angle ¢ are uniformly distributed on [0, 27). The connectivity between each pair of neurons (any
neurons ¢ and j) was given by:
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As a result, neurons activate other neurons with similar preferred angle and inhibit neurons with
dissimilar preferred angle (Fig. 1).
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Figure 1: Rate functions over different voltages

2.1.2 Dynamic equation for spontaneous activity

The spontaneous activity of the ring model was given by the differential equation:
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For our simulation, we defined the non-linearity F as a hyperbolic tangent function:
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The network state 7" was randomly initialized in order to break the symmetry:
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2.1.3 Dynamic equation for evoked activity

To simulate the evoked response of the network to inputs, we introduced the term I;(¢) to represent
the input current for and individual neuron. Thus, the activity of the ring model was modified as:



N
=—-r+F\|L+ Z Wijrj 9

Jj=1

dT‘i
Tt

(10)

Due to the tuning properties that emerge from the feedforward network, an input representing the
head direction ¢ will not only provide input current to the neuron with preferred orientation ¢, but
also neurons that have angular preference close to ¢. We represented the input current felt by each
neuron ¢ with preferred orientation ¢; due to an input representing ¢ using the following equation:

K cos(¢i—da)
I; = K (11
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where K is a constant controlling the width of the function. For our simulations we set K = 100.
This creates an input function reminiscent of psychometric tuning curves (Fig.2).
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Figure 2: Input current to an individual neuron as a function of the difference between input head
direction and preferred orientation of the neuron

2.2 Simulation of the asymmetric ring attractor
2.2.1 Design of the asymmetric ring model

The head direction system can track the animal’s head direction based on the rotational speed of the
head, without external sensory input. To achieve that, we must introduce an asymmetric connectivity
matrix to the ring model and generate limit cycle behavior. For the asymmetric ring model, we used
the following to describe connectivity between every pair of neurons % and ¢:

Wi =W (COS(@ — ¢j — Obias) — ;) (13)
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where ¢4 1s a bias term that shifts the maximum synaptic connectivity to several neurons away
from itself (Fig. 3).
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Figure 3: Shifted synaptic connections in the asymmetric ring model

2.2.2 Dynamic equation for angular velocity modulation

The rotation speed of the ring must be determined by the angular velocity of the head, wpeqq-
Although it might be possible to modulate the ring rotation speed by adjusting ¢p;qs based on wpeqd,
this is unlikely to the be a mechanism used by the biological head direction system due to the slow
dynamics of weight updating. Instead, we introduced a multiplicative speed modulation term to the
firing rate of the neurons in the model, to make the firing rate proportional to the rotational speed
(based on Ocko, Hardcastle et al. 2018):
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Then we used 7, as an input to the original differential equation.

2.3 Simulation of the feedforward model

The feedforward model is a simple network model where neurons in the ring are not interconnected,
and derive their orientation selectivity and orientation tuning via their feedforward inputs from other
regions. This model has been used in previous studies, but we believe that it does not reflect the key
characteristics of the head direction system as well as the ring attractor model. Thus, we used the
feedforward model as a comparison to our ring attractor model.

For the feedforward model, we set W;; to be O for the pure feedforward model (no connections
between neurons in the ring) and used the same dynamic equation and external input described in
2.1.2 - 2.1.3 for the simulation.

3 Results

3.1 The ring attractor generates a persistent activity bump spontaneously

In order to examine whether the ring attractor model can generate the desired dynamics for head
direction representation, we first simulated a ring model without any external input (See Method
2.1.1-2.1.2). As expected from our design of the ring model, a spontaneous activity bump was
generated at a random position on the ring of neurons (Fig. 4A-B). After the bump was formed, it



stabilized at its position on the ring without any drifting, jumping or change in shape. This result
suggests that the ring attractor model can form a bump which can sustain itself without direct external
input, which supports a key characteristic of the head direction system.
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Figure 4: Spontaneous activity bump generated by the ring model. (A) A spontaneous bump centered
at a neuron with a preferred orientation of 220; (B) A spontaneous bump centered at a neuron with a
preferred orientation of 50.

3.2 The bump position can be updated by direct external input

After the bump was generated, we introduced a time-varying external input to test whether the activity
bump can be updated by external input (Fig. 5A,C). After the onset of stimulation (at the first white
line), the bump slowly drifted towards the external input angle instead of jumping onto it directly (fig.
5B); the bump always exists continuously. After we withdraw the external stimulation, the activity
bump of the ring model stayed at the its position. This is in contrast to the feedforward model. The
feedforward model did not generate a spontaneous bump, and while it did form one upon stimulation
onset, this bump would disappear and reform when the input orientation changed. Also, the bump of
the feedforward model faded away when we withdrew stimulation.

These results suggest that the ring model can track external input and the maintain activity with-
out input, which satisfies the requirements of persistence and updatability for the head direction
representation. The ring model reflects these characteristics better than the pure feedforward model.
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Figure 5: The activity bump of the ring model moves towards external input. (A) The stimulation
pattern of the external input to the ring model; (B) The bump of the ring model moves gradually
towards the external input angle and persists after stimulation ends. (C) The stimulation pattern of
the external input to the pure feedforward model; (D) The bump of the feedforward model jumps in
response to changes in the external input angle, and disappears when stimulation ends.

3.3 The bump is unique even with conflicting external input

To check the uniqueness of the bump on the neuronal ring, we introduced two conflicting external
input (Fig. 6A, C). The feedforward showed two bumps in response to the two input angles (Fig.
6D). However, the bump of the ring model converged to one of the input angles (Fig. 6B), offering a

unique representation for head direction.
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Figure 6: The uniqueness of the bump in the ring model. (A) The stimulation pattern of the external
input to the ring model; (B) The bump of the ring model moves towards one of the external input
angle and remains unique. (C) The stimulation pattern of the external input to the pure feedforward
model; (D) The bump of the feedforward model was split.

3.4 The bump can be updated based on the internal representation of angular velocity

When we close our eyes and rotate our heads, we can still keep track of our head direction. This
is because our internal representation of head direction can be updated based on inputs from the
vestibular system describing head angular velocity (Turner-Evans, Wegener et al. 2017). To achieve
this in our model, we modified the ring attractor to make it rotate as a limit cycle (See Method 2.2).
Without any directed head direction input, the activity bump can drift by itself (Fig. 7A). The rotation
speed of the bump can then be modulated by the head angular velocity (fig. 7B).
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Figure 7: Rotating the bump without direct head direction input. (A) The bump rotates at a steady

rate based on a constant angular velocity input; (B) The bump rotates based on an angular velocity
input which is linearly increasing with time.

3.5 The bump can (to some extent) tolerate mismatch between the angular velocity
representation and direct external input

Although we can keep track of head direction with our eyes closed while rotating, we may still
lose track if we rotate too many cycles. This might due to a mismatch between the real angular
velocity and our internal representation. One consequence of this is that the bump’s rotation based
on the internal velocity representation may not be able to match direct external head direction input.
However, it seems we never feel this mismatch in our daily life when we have both the direction input
and the velocity input. In the next part, we explored what would happen to the ring model if we have
a mismatch between direction input and velocity input (Campbell, Ocko et al. 2018). For simplicity,
in all of the following simulations, we kept the internal velocity representation as a constant, and
increased or decrease the real angular velocity.

First, we slowed down the rotation speed of the direct input, which means the internal representation
of the angular velocity is faster than the real one (Fig. 8A). Before the external input onset, the ring
rotates based on the internal velocity representation (Fig. 8B, 1000 — 3000 ms). After direct external
input was introduced, the bump on the neuron ring starts to follow the external input (fig. 8B, 3000 —
6000 ms), such that the steady-state phase difference between the external input and the peak position
on the neuronal ring quickly becomes negligible (Fig. 8C, 3000 — 6000 ms).

As we slow the external input further, the rotation speed of the neuronal ring further slows down
to track the external input(Fig. 8C, 6000 — 9000 ms). However, the steady-state phase difference
increased slightly in this case (Fig. 8C, 6000 — 9000 ms). After we withdrew the external input, the
bump went back to its original internal rotation speed (Fig. 8B, 9000 — 10000 ms).
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Figure 8: The bump can tolerate mismatch between the angular velocity representation and direct
external input when the internal representation of the angular velocity is faster than the external
input (A) The external head direction input angle; (B) The bump rotates and responds to the external
head direction input and internal velocity input; (C) The phase difference between the external input
angle and the peak position on the neuronal ring

Next, we speed up the rotation of the direct input, which means the internal representation of the
angular velocity is now slower than the real one (Fig. 9A). The bump on the ring can still follow
the external input when there is a mild mismatch (Fig. 8B, 3000 — 6000 ms). This is reflected in
the steady-state phase difference between the external input and the bump peak position, which is
negligible during this period (Fig. 8B, 3500 — 6000 ms).

When we sped up the external input even further, the rotation speed of the activity bump was unable
to follow the external input (Fig. 9B, 6000 — 9000 ms). The steady-state phase difference between
the external input and the bump peak position is quite significant (Fig. 9C, 6000 — 9000 ms).
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Figure 9: The bump can to some extent tolerate the mismatching of the angular velocity representation
and direct external input; here is a case when the internal representation of the angular velocity is
too slow. (A) The external head direction input angle; (B) The bump rotates to reflect the external
head direction input and internal velocity input, (C) The phase difference of the external input angle
and the peak position on the neuronal ring

4 Discussion

In this project, we simulated a ring attractor model and explored its dynamic properties. We found
the ring attractor can generate a bump spontaneously (Fig. 1,4), and the bump will drift to match the
external head direction input (fig. 2,5). We found the bump was stable even without external input
and it was always unique even with multiple external inputs (Fig. 4-6). By connecting the neurons
asymmetrically, we made the bump rotate based on the internal angular velocity representation
without head direction input (Fig. 3,7). And finally, we explored the tolerance of ring attractor to

mismatches between the internal angular velocity representation without head direction input (Fig.

8.9).

Because of the many desirable properties of the ring attractor, it has also been used to model other
representation systems for 1-D variables without boundary, such as orientation tuning in visual cortex
(Ben-Yishai et al. 1995, Somers et al. 1995, Ferster Miller 2000). The ring attractor can be further

extended to 2-D as a torus attractor for modelling the 2-D grid cell pattern (Campbell, Ocko et al.

2018). More recently, others have hypothesized a persistent working memory model that relies on the
self-sustainable property of the ring attractor (Bouchacourt and Buschman 2019). In addition, it may
be possible in the future to implement the ring model as an network structure for artificial recurrent
neural networks.

5 Conclusions

The dynamics of the ring attractor may underlie the mechanisms for head direction representation in
biological systems. In support of this, we have shown that it satisfies the three key feature of the head
direction representation: 1) it represents the current head direction stably even without direct external
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input, 2) it integrates both the direct head direction inputs and the internal angular head velocity
representation, and 3) it maintains the uniqueness of the head direction even with conflicting inputs.
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