
Neurodynamics
Week 2 Computational Lab

Problem 1
Part (a)

Integrating
factor! I(x)

To get numerical values, use:

Problem 1 (b,c)

Part (b):

Definition of tau? (week 2 slides)

Part (c):

ODE function in language of choce

Simulate this Markov process stochastically to find
the fraction of gates open, n(t).

Problem 1 (d)

Markov chains

closed
(0)

open
(1)

P(open)
P(stay closed)

Markov chains

closed
(0)

open
(1)

P(open)
P(stay closed)

P(close)

P(stay open)

Markov chains

closed
(0)

open
(1)

0.8
1 – 0.8 = 0.2

0.6

0.4

Markov chains
If state is closed:

P(open) = 0.8
P(stay closed) = 0.2

? Number Do something

0 10.2

openstay closed

Markov chains
If state is closed:

P(open) = 0.8
P(stay closed) = 0.2

? 0.43 Do something?

0 10.2 open
stay closed

Markov chains
If state is closed:

P(open) = 0.8
P(stay closed) = 0.2

? 0.43 Open

0 10.2 open
stay closed

Markov chains
If state is closed:

P(open) = 0.8
P(stay closed) = 0.2

? 0.13

0 10.2 open
stay closed

Stay Closed

Problem 1 (d) – What are the probabilities?

•P(open):

•P(close):

• Opening rate:

• Closing rate:

Problem 1(d)

Ø Assume there are N gates;

Ø At a short time window ∆t, every gate will update
its state (from close to open or from open to
close or keep its state)

Ø Calculate the fraction of open gates after time T.

This is the partial codes of this problem !

Problem 1 (d)
N = 1000 # number of gates

gate_states = np.zeros(N) # all gates start closed
output = []
for timepoint in t: # do this for all time points in simulation

for gate in range(N): # "throw a dart" for each gate
r = np.random.rand() # psuedo-random number generator
if gate_states[gate] == 0:

Probability of transition to open if the gate is closed
gate_states[gate] = int(r < (t_step * alpha_n(tp)))

else:
Probability gate will stay open if open
gate_states[gate] = int(r < (1 - t_step * beta_n(tp)))

output.append(sum(gate_states) * 1.0 / N)
return output

Problem 2

Example codes should be
helpful.

Problem 3(a)

p = np.polyfit(n,h,1);

h_reg =

Problem 3(a,b)

p = np.polyfit(n,h,1);
h_reg = ?

linear regression

Problem 3(a,b)

How strong is the relationship?

calculate the correlation coefficient:

corrcoef(n,h);

Good Luck!

