
Neurodynamics - Fall 2019
BENG 260 / BGGN 260 / PHYS 279

Homework 2: Due October 18

Computational Lab

1. Two State Markov Model [30 points].

Assume we have a simple two state Markov model where n denotes the fraction of gates open, and
1−n denotes the fraction of gates closed. The opening rate is αn(Vm) = α0e

λVm and the closing rate
is βn(Vm) = β0e

−µVm . Let α0 =
0.6
s , β0 = 0.8

s , λ = µ = 0.02
mV . The Markov diagram is as follows:

αn(Vm)
1− n 
 n

βn(Vm)

The rate equation for the mean field for this Markov process is

dn

dt
= αn(Vm)(1− n)− βn(Vm)n

We apply an input voltage Vm(t) = 30mV ∗H(t− tinput) where H(t) is the Heaviside step function
and tinput = 10 s. Assume all gates begin in the closed state.

(a) Solve for n(t) analytically.

(b) Plot the time constant, τn from -100:100. Hint: Vm is a step function, so τn should also be a
step function.

(c) Solve for n(t) computationally using an ode solver.

(d) Simulate this Markov process stochastically to find the fraction of gates open, n(t), for different
number of channels N = 1, 30, 1000. Compare your three solutions by plotting n(t) for t from
0 to 20 s.

2. Simulating Hodgkin-Huxley neurons [30 points].

We will simulate the Hodgkin-Huxley (HH) model of action potential generation in the squid giant
axon. You will program these equations so you can use them on the homework. The template code
provides a coded example of the Morris-Lecar equations which you can use for reference.

The equations describing the HH dynamics are replicated here for convenience:

dV

dt
=

1

C
(−INa − IK − IL + Iext) (1)

INa = gNa m
3h (V − ENa) (2)

IK = gK n4 (V − EK) (3)

IL = gL (V − EL) (4)
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with parameters:

C = 1 µF/cm2

ENa = 115mV ; gNa = 120mS/cm2

EK = −12mV ; gK = 36mS/cm2

EL = 10.613mV ; gL = 0.3mS/cm2

(5)

where the dynamics of gating variables:

dm

dt
= αm(V ) (1−m)− βm(V )m (6)

dh

dt
= αh(V ) (1− h)− βh(V ) h (7)

dn

dt
= αn(V ) (1− n)− βn(V ) n (8)

is determined by rate functions:

αm(V ) = (25− V )/(10(exp((25− V )/10)− 1)) (9)

βm(V ) = 4 exp(−V/18) (10)

αh(V ) = 0.07 exp(−V/20) (11)

βh(V ) = 1/(exp((30− V )/10) + 1) (12)

αn(V ) = (10− V )/(100(exp((10− V )/10)− 1)) (13)

βn(V ) = 0.125 exp(−V/80) (14)

A. Plot the rates αm, βm, αh, βh, αn, and βn as functions of membrane voltage V , for range -20 to
+120 mV.

B. Starting with just IL, the leak current, leaving out INa and IK :

dV

dt
=

1

C
(−IL + Iext) (15)

IL = gL (V − EL) (16)

C = 1 µF/cm2; EL = 10.613mV ; gL = 0.3mS/cm2 (17)

We have an RC circuit representing a passive membrane. Plot V as a function of time t. Try
different values for the injected current Iext, starting with a value Iext = 20 µA/cm2.

C. Now add INa, IK , and their gating variables n, m, and h to observe spiking. Plot the membrane
voltage V and the gating variables n, m, and h as a function of time t, for different values of
injected current Iext as in (B).

D. These parameter settings in the HH equations set the resting potential at zero. How would
you modify the parameters to set the resting potential at -70 mV? How would you modify the
parameters to increase the threshold of injected current Iext for spiking?
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Homework Problems

3. Reduction of HH to two-dimensional dynamics [40 points].

The HH equations that you just simulated involve 4 dynamic variables, V , n, m, and h. Now we
will try to simplify the dynamics to the smallest possible number of dynamic variables capable of
generating spiking dynamics. In this case it will be 2 dynamic variables - systems with fewer than 2
variables can generate limit cycles.

A. We will first try to collapse h and n into a single dynamical variable, n. For the full HH data that
you generated in (2C), show a scatter-plot of h as a function of n. How strong is the relationship?
Try a linear regression of h in terms of n:

h = λ− µn. (18)

B. Next, we will approximate the dynamics of the fast Na activation variable m(t, V ) with its
instantaneous (equilibrium) value

m∞(V ) = αm(V )/(αm(V ) + βm(V )). (19)

For the full HH data that you generated in (2C), show a scatter-plot of m∞(V (t)) as a function
of m(t). How strong is the relationship?

C. Now rerun the HH simulations of (2C) in reduced form, replacing h with its linear regression
from (A), replacing m with m∞(V ). Compare the reduced HH output with the full HH output
of (2C).

Note: The reduced HH model that you just simulated is similar to the FitzHugh-Nagumo, and Morris-
Lecar simplified spiking models in two reduced variables (V and W for FitzHugh-Nagumo, and Vm
and w for Morris-Lecar, as in the Week 2 lecture notes.) Two-dimensional models are useful for
stability analysis using null-clines as we will see in Week 3.

4. Hodkin-Huxley Model With Expanded Channel Gating Dynamics [Bonus Problem: 20 points].

(a) K+ Channel Gating Dynamics: Show that n4 = n4 where n4 is the only state of the Potassium
channel Markov model that corresponds to an active channel, and n4 denotes the solution of
a two state Markov model (using opening and closing rates corresponding to the Potassium
channel) raised to the fourth power. The full Potassium channel Markov model is as follows:

4αn 3αn 2αn αn
n0 
 n1 
 n2 
 n3 
 n4

βn 2βn 3βn 4βn

(b) Na+ Channel Gating Dynamics: Show that s31 = m3h . s31 is the only state of the sodium
channel Markov model that corresponds to an active channel; m3 denotes the time course prob-
ability of the sodium activation gate being in the open state, raised to the third power; h denotes
the time course probability of the sodium inactivation gate being in the open state. The full
sodium channel Markov model is as follows:

3αm 2αm αm
s01 
 s11 
 s21 
 s31

βm 2βm 3βm
αh �� βh αh �� βh αh �� βh αh �� βh

3αm 2αm αm
s00 
 s10 
 s20 
 s30

βm 2βm 3βm
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(c) Now simulate the entire Hodgkin-Huxley model stochastically and compare with your simula-
tion from Problem 2. Vary your differential equation for Vm by using different combinations
of currents. Adjust your external current so that you are slightly below threshold, then increase
your current so you are slightly above threshold, and compare.

Submission Guidelines

Solutions without work or explanations where applicable will receive no credit. Submit a single .zip file
containing solutions, plots, and Matlab/Python code to both computational lab and homework problems by
3:00pm of due date on Canvas.

The submission file should follow the naming scheme LastFirst A12345678 HW2.zip.

4


