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Neuron Action Potentials and Synaptic Currents

Neurons transmit information by
electrical signals (action potentials, or . incoming
SpikeS). action

) ] v potential
At insulating gaps (synapses), Y
presynaptic neurons release oresynaptic
neurotransmitters upon each action neuron
potential.

The postsynaptic neuron receives and
Integrates the neurochemical current. ° modulators

Downstream changes decide whether
the incoming activity will be
propagated or suppressed.
postsynaptic

Diffusible neuromodulators (such NO) neuron outgoing
further regulate neural function through ¢ oontn
long-range chemical transport, and

local receptor binding at the neuron

membrane.

neurotransmitter
release
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Synaptic Currents and Volume Conduction

Subsynaptic Postsynaptic
Membrane Neuron

Figure 46 Membrane current due to local excitatory synaptic action. An action potential
propagating along the presynaptic axon activates a neurotransmitter in the synaptic
knob that changes local membrane conductivities to select ions, thereby producing a
local current sink and more distant distributed sources to preserve current conservation.

Table 4-1 Typical resistivity of several materials and tissues

Material Resistivity (22 cm) — Postsynaptic currents triggered by action

Copper 2x107° potentials (spikes) give rise to local field

o o potentials (LFPs) through volume

S R o conduction in extracellular space.

S o « Excitatory synapse: local current sink
White matter (average) 650 ° ibi :

Spinal sord (ramereose) o Inhibitory synapse: local current source
Bone (100 Hz) 8,000— 16,000
Pure water 2% 107
Active membrane (squid axon}) 2 x 107
Passive membrane {squid axon) 10°

Nunez and Srinivasan 2006, p. 153-154
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Current Source/Sink Dipole Electric Field

Coherent (synchronous) activity over a
distribution of synapses generates, to
first order, a dipole field:

| 1 1) | dcosé
4rc\ R, R,) 4noc r?

D(r) =

oy anc Dipoles align along macrocolumns,
inhibitory synapses because of their polarization in the
Gl distribution of excitatory and inhibitory
cortical macrocolumn

synapses.

Synchronous dipoles

add coherently;
asynchronous dipoles
add incoherently. ’

Figure 5-8 (a) The usual current dipole consisting of a point source +I and a point sink —I,
separated by a distance d. (b) A region of distributed sources and sinks. If local current
is conserved, the potential at large distances is also dipolar, but with an effective pole
separation deg smaller than d. With perfect source-sink symmetry, defr—> 0 and a so-called
closed field is generated, as in fig. 5-5. (c) Dipole current lines (solid) and equipotentials
(dashed) are plotted. These patterns occur in the saltwater tank if the tank walls and water
surface are all located far from the dipole and both recording electrodes. Boundary
surfaces tend to compress current lines and increase potentials.

Nunez and Srinivasan 2006
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Effect of Skull and Scalp: ECoG and EEG

EEG Table 42 Skull resistivity reported in the literature

Skull condition

Resistivity (£2cm)

Frequency (Hz)

Reference

Dead, dry
Dead, hydrated
Dead, hydrated
T Dead, suitures
Dead, hydrated
Live, 3 layers
Live

Dead, hydrated

Homogeneous skull

10
10,000-20,000
15,000-21,000
3.500-10,000
13,000-86,000
4,600-21,000

7.700
6,700
1,200-3,100

500
100
100
20
20

10- 1000

10-10°
10

Rush and Driscoll 1969
Rush and Driscoll 1969
Law 1995

Law 1993

Akhatari et al. 2000
Akhatari et al. 2000
Qostendorp et al. 2000
Oostendorp et al. 2000
Hoekema et al, 2003

pe.ty | erain Modified from Hockema et al. (2003).

— Electrocorticogram (ECoG)

Scalp  Intracranial (invasive), on the cortical surface

Quter skull table

» Local features (cortical surface LFPs)

« Epilepsy monitoring and mapping

— Electroencephalogram (EEG)
* Non-invasive, on the scalp
» Global features (brain waves)

Inner skull table
Cortex I

—¥  White matter ¥~

b » Brain-computer interfaces (BCI)

Figure 44 (a) A common volume conductor model of the head is the threesphere model.
It consists of an inner sphere (brain) and surrounded by two concentric spherical
shells (skull and scalp). More complicated models may not be more accurate if tissue
boundaries and (especially) tissue resistivities are not known with sufficient accuracy.
{b) A more realistic geometric model consists of two additional skull layers and a layer of
cerebral spinal fluid (CSF). Current shunting through the middle skull layer (diploe),
CSF, and scalp is indicated by arrows. The effective skull resistivity in the three-sphere model
(a) is larger than the actual skull resistivity in (b).
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Neural Signals - Spikes

(Action Potentials)

— Single unit firings.

— Recorded via microelectrodes placed close to the neuron cell
body.

— Amplitude as high as 500 puV and frequency content up to 7 kHz.

Mollazadeh et al.
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Neural Signals - LFP

(Local Field Potentials)

— Summation of pre- and postsynaptic activity from a population
of neurons around the electrode tip.

— Recorded via microelectrodes or lower impedance electrodes.
— Amplitude as high as 1 mV and frequency content up to 200 Hz.

Mollazadeh et al.
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Neural Signals - ECoG

(Electro-cortico-gram)

— Electrical activity on the cortical surface resulting from volume
conduction of coherent collective neural activity throughout

cortex.
— Recorded via surface (disk) electrodes.
— Amplitude as high as 5 mV and frequency content up to 200 Hz.

Leuthhardt et al.
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Neural Signals - EEG

(Electro-encephalo-gram)

— Electrical activity on the scalp resulting from volume conduction of
coherent collective neural activity through the brain and skull, and
laterally along the scalp.

— Recorded via surface (disk) electrodes.
— Amplitude as high as 300 puV and frequency content up to 100 Hz.




Other Biopotential Signals on Body Surface

o Surface electromyograms (EMG)
— 10 uVpp-ImVpp, 10Hz-1kHz
— recorded on the skin near muscles of interest
— conveying neural activity controlling muscle contraction and
particularly useful for motor prostheses
 Electrooculograms (EOG)
— 100 uVpp-1mVpp, 10Hz-1kHz
— recorded on the frontal skull near the eyes
— a form of EMG conveying gaze direction useful for eye tracking in
human-computer interfaces
 Electrocardiograms (ECG)
— 10 uVpp-10mVpp, 0.1-100Hz
— recorded on the chest

— conveying heart activity for monitoring of health in cardiac patients
and also useful in athletic fitness monitoring and detection of
emotional state.




Biosignal Recording

Electrodes
Amplifiers
Signal Conditioning
Telemetry




Electrodes

Needle electrode
— Metal, typically Tungsten

ot = R bty — Electrical contact impedance in
needle microelectrode 10kQ tO 1MQ range

Kation Scientific
— Penetration through neural
tissue

 Flat electrode
— Higher impedance

— Mostly for external use and on
neural surface

» scalp EEG
(electroencephalogram)

_ recording
active EEG gel-contact electrode ] ]
Biosemi  retinal implants
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Electrode Arrays

“Utah array”
Normann laboratory, University
of Utah, 2003

 Penetrating electrode arrays

— Typically silicon based, fabricated in MEMS
(microelectromechanical systems) process

— Cortical vision implants
 Flat electrode arrays
— Retinal implants
— Electrocorticogram (ECoG) monitoring systems
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Electrocorticogram (ECoG) Recording

Implanted epilepsy
grid electrodes
www.mayoclinic.com
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Cortical surface electrodes

— Higher spatial resolution than scalp EEG
Epilepsy monitoring

— Preparation for surgery to remove focus of epileptic activity,
avoiding critical brain functional areas

Gert Cauwenberghs

Biopotential Sensing and Analog Signal Processing
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Scalp EEG Recording

BioSemi Active2
www.biosemi.com

o State of the art EEG recording
— 32-256 channels
— Gel contact electrodes
— Tethered to acquisition box
— Off-line analysis
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Gel-Based Wet-Contact EEG Electrodes

skin electrode

skull
Amplitude (typ.):
1-100 pV
Bandwidth:
1-100 Hz
Impedance:
10-100kQ




Dry-Contact EEG Electrodes

skin

skull
flui

electrode

Dry-contact
electrode
penetrates
outer layer of
skin for ohmic
contact without
conductive gel.




Wireless EEG/ICA Neurotechnology

Sullivan, Deiss, Jung and Cauwenberghs, ISCAS’2007

RF Wireless L~ i 10Hz alpha

Link 50 95 B W B 4 45 m

M AL A< .

Eye blinks Eyes Closed

Integrated EEG/ICA wireless EEG recording system
Scalable towards 1000+ channels
Dry contact electrodes (NCTU, Taiwan)
Wireless, lightweight
Extends to integrate local independent component analysis (ICA)
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Non-Contact EEG Electrode

skin electrode

skull

flui Capacitive
coupling,
rather than
ohmic contact,
between
scalp/skin and
electrode

Richardson & Lopez, 1970. Matsuo, et.al. 1973. And others




Capacitively-Coupled Sensor Design

scalp

 Design Challenges
— High impedance input node
« Current noise integrates to large input voltage noise at low frequencies
« Parasitic currents (amplifier input bias current, PCB)
« External noise pickup
— Size, Power, Cost
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Capacitive Sensor and Interface Circuit
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Non-Contact Sensing at Varying Distance

Gain vs. frequency Gain vs. distance

maa AR

Theoretical
% Measured ||

Gain (dB)
Mid-band Gain

Dist=0.1mm
Dist=1.6mm
= = =Dist=3.2mm
T n T

L L P 1 TS ! 1 1 | | 1 1
10' 10° 0 ) 1 15 2 2.5 3 35
Frequency (Hz) Sensor Distance (mm)

Noise vs. distance

N
o

Theoretical
H =¥ Measured

_
o

Gain is weakly dependent on
distance, owing to active
shielding.

Noise approaches low levels of
wet-contact electrodes at near-
zero distances.

*

_ —_ _
N » ()
T T T

Voltage Noise - RTI (u Vrms)
S

o N » o ©
T T T T

1 1 1
15 2 25
Sensor Distance (mm)

o

Gert Cauwenberghs Biopotential Sensing and Analog Signal Processing gert@ucsd.edu



Recorded EEG Alpha Wave Activity
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Neurosensory Engineering
“In vivo” sensing/control of neural/synaptic activity
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EEG/ECoG/EMG Amplification, Filtering and Quantization

Mollazadeh, Murari, Cauwenberghs and Thakor (2007)

— Low noise
« 21nV/WHz input-referred noise
o 2.0uVrms over 0.2Hz-8.2kHz
Low power
 100uW per channel at 3.3V
Reconfigurable
* 0.2-94Hz highpass, analog adjustable

» 140Hz-8.2kHz lowpass, analog
adjustable

» 34dB-94dB gain, digitally selectable
High density

e 16 channels

e 3.3mm X 3.3mm in 0.5um 2P3M CMOS

e 0.33 sg. mm per channel
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Neuropotential Interface: Circuit Design

 VLSI system with programmable:
— Bandwidth to separate different modalities of neural signals
— Midband gain (100-400)
— ADC resolution (8-12 bits)

To telemetry

interface
G, C incremental AX ADC +

T

f

From neurochemical
interface
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Neuropotential Interface: Circuit Design

 Front-end amplifier

Capacitive feedback bandpass topology after Harrison and Charles
(2003)

Fully differential two stage voltage amplifier
Fixed midband analog gain of 40 dB
High frequency lowpass cutoff is selectable by amplifier bias current

Low frequency highpass cutoff is set by high-resistance feedback
elements

Bandpass amplifier
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Neuropotential Interface: Results

Measured gain: 39.7 dB
Low frequency cutoff: 0.2 Hz

High frequency cutoff: tunable
from 0.14 - 8.2 kHz

THD!< 1%
PSRR2 >76 dB
CMRR?3>82 dB

10° 10°

Frequency (Hz)
1THD: Total harmonic distortion

2PSRR: Power supply rejection ratio

SCMRR: Common mode rejection ratio




Neuropotential Interface: Results

 The digitized output has:

— THD of less than 0.3% for input signals smaller than 1 mV
— Noise of 1.2 LSB

LI . LR L L L
S i Y'mV: B0:Hz€ine ¢ ¢
B o R b b PR ¢ 2

Power spectrum of
the digital output of
the system with a
S0Hz 1 mV,
sinusoidal input
presented to the
system.

Power Spectrum (dB)

10° 10
Frequency (Hz)
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Joint Electrical and Chemical Neural Recording

— Neuropotential and neurochemical signals are interrelated, and are
Implicated in several basic and clinical neural pathways.

» For example, the death of dopaminergic neurons is implicated in
Parkinson’s disease.
— Simultaneous electrophysiological and neurochemical measurement
allows to monitor these interactions or diagnose neural disease.

Neurochemistry

electrode
Electrophysiology

electrode

Midbrain Cerebellum

Basal ¢
ganglia

Ivity Qf Dopaminergic
ni rons in Substaatia Niar
activity (affected by Parkinson’s disease)

Gert Cauwenberghs Biopotential Sensing and Analog Signal Processing gert@ucsd.edu



Neurotransmitter Detection

 Neurotransmitters:
— Messenger molecules between neurons
* Dopamine, Glutamate, GABA etc.
— Key to understanding neural pathways
— Neural disease etiology

* Detection:
— Optical
— Chromatography

— Electrochemical |
re_gox

. Fast A >

) Vred
— response time < 1ms ﬂ| |_
e Sensitive

- 1InA =10
) fM ) Working electrode
° SyStem mtegratlon Reference electrode
— in vivo monitoring Counter electrode
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Neurochemical Interface: Circuit Design

|
| Incremental
| AX ADC

To neuropotential
interface

:

SysClock TUULTULIUUL UL Loy
r_rm _rn _rm r. |

¢ | | | |

— Current-mode incremental ADC (resetable delta-sigma modulator)

— Duty cycle modulation in DAC delta-sigma feedback implements:
« programmable digital amplification G (at duty cycle 1/G);

« avoids current amplification, yet accommodates a wide range of input currents,
and lowers input current noise.

Murari et al., BioCAS'2004
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VLSI Potentiostat Array for Electrochemical Sensing
Murari, Stanacevic, Cauwenberghs, and Thakor (BioCAS'2004)

Distributed neurotransmitter sensing
Accurate current measurement

* 6 orders of magnitude range

* 1 pA sensitivity
Low power

e 300 uW at 3.3V supply and 1MHz clock
Compact

e 3mm x 3mm in 0.5u4um CMOS

o

D__ i
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Normalized digital output

-9 -8
Log of Input Current [A]
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Distributed Sensing of Dopamine Activity
Murari, Stanacevic, Cauwenberghs, and Thakor (EMBS’2004)

Electrochemical detection
Carbon-probe redox current

200 300 400 500
Time (sec)
“In vitro” Dopamine monitoring by the chip using micro- VLS| potentiostat array\
fabricated electrode array as working electrode. distributed electrochemical sensing

(Murari, Stanacevic,
Cauwenberghs, and Thakor, 2004)

Current-Mode AX
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Implantable Wireless Telemetry

 Transcutaneous wires limit the application of implantable
sensing/actuation technology to neural prostheses

— Risk of infection

* Opening through the skin reduces the body’s natural defense against
invading microorganisms

— Limited mobility
e Tethered to power source and data logging instrumentation

 Wireless technology is widely available, however:

— Frequency range of radio transmission is limited by the body’s
absorption spectra and safety considerations

* Magnetic (inductive) coupling at low frequency, ~1-4 MHz
* Very low transmitted power requires efficient low-power design

Sauer, Stanacevic, Cauwenberghs, and Thakor, 2005
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Implantable Wireless Telemetry

s !ndytor Coil
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Implantable probe with electrodes, VLSI .
sensor/actuation processor and power

-,

. i Telemet
harvesting telemetry chip. r_y\*

Sensing/Aw:l

released
probe bod)

Data Clock
Receiver \ "1 Extraction

Power g ) Rectification Regulation
Transmitter

Data

Modulation Encoding

Power delivery and data transmission Telemetry chip (1.5mm X 1.5mm)

over the same inductive link

Sauer, Stanacevic, Cauwenberghs, and Thakor, 2005
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Signal Extraction

Neuromorphic Systems Engineering
Independent Component Analysis
Adaptive Pattern Recognition




Independent Component Analysis in aVLSI
Solving the Cocktail Party Problem in Real Time

Source Separation  Source Localization

Sensor
Array

Micropower Micropower

super-resolution independent
acoustic component
localization g E S % analysis
(ESsCIRC2003) [ — Pamny (1scAs™2004)




Independent Component Analysis

* The task of blind source separation (BSS) is to separate and recover
independent sources from (instantaneously) mixed sensor observations,
where both the sources and mixing matrix are unknown.

_ Sensor Reconstructed
Source signals  gpservations  source signals

zg(t): W y(b)
M N

A

Mixing matrix Unmixing matrix

* Independent component analysis (ICA) minimizes higher-order statistical
dependencies between reconstructed signals to estimate the unmixing
matrix.

Columns of the unmixing matrix yield the spatial profiles for each of the

estimated sources of brain activities, projected onto the scalp map (sensor
locations). Inverse methods yield estimates for the location of the centers of

each of the dipole sources.
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EEG Independent Component Analysis

Swartz Center for Computational Neuroscience, UCSD
http://sccn.ucsd.edu/

— ICA on EEG array data identifies and localizes sources of brain activity.

— ICA can also be used to identify and remove unwanted biopotential
signals and other artifacts.

« EMG muscle activity
* 60Hz line noise

Qriginal EEG Corrected EEG

-
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Left: 5 seconds of EEG containing eye movement artifacts. Center: Time courses and scalp maps of 5 independent component
processes, extracted from the data by decomposing 3 minutes of 31-channel EEG data from the same session and then
applied to the same 5-s data epoch. The scalp maps show the projections of lateral eye movement and eye blink (top 2) and
temporal muscle artifacts (bottom 3) to the scalp signals. Right: The same 5 s of data with the five mapped component
processes removed from the data [Jung et al., 2000].
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Mixed-Signal VLSI Independent Component Analyzer

real-time, micropower blind source separation
Celik, Stanacevic and Cauwenberghs (ISCAS’2004)

Sensor Reconstructed

observations source signals

Source Mixed scurce signals Unmixed signals

b=

signals (E
Mixing matrix W Unmixing matrix

s(t) X(t) . I X(t) y(t)

0.5 1 15 2 25 3 3,

+’ A 7 7 W 7

N Mg ' (E M N
i :
Two mixed speech 05 InfoMax ICA implemented

signals presented at B e e in micropower VLSI 0% o5 1 15 2 28
16kHz Time[sec] Time[sec]

0.1

‘ i 30dB separation observed
oA N e
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e i sE
n L] i Fl B L3
W21 22 W23
EERREEREEEEEN
LN S

« 8-b resolution R AL

Weights

SIH-OUTPUT BUFFERS

* 180 pW power ICA REGISTERS
e3mm X 3mm in MULTIPLYING DAC

0.5um 3M2P CMOS . 5 1 15 2 25 3

A ANASN Time[sec]

16 kHZ Samp“ng | Vi I / 13 in
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Gradient Flow Independent Component Analysis

Integrated acoustic source separation and localization
Celik, Stanacevic and Cauwenberghs (NIPS’2005)
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Support Vector Machine (SVM)
Adaptive Pattern Recognition

Sensory
Features

Large-Margin Kernel ===y C|ass Identification
Regression | |

Kerneltron:
massively parallel
support vector

Y+  “machine” in silicon
(ESSCIRC™2002)




Trainable Modular Vision Systems: The SVM Approach

Papageorgiou, Oren, Osuna and Poggio, 1998

— Strong mathematical
foundations in Statistical
Learning Theory (Vapnik, 1995)

— The training process selects a
small fraction of prototype
support vectors from the data

set, located at the margin on
both sides of the classification
boundary (e.g., barely faces vs.
barely non-faces)

Support vector machine
(SVM) classification for
pedestrian and face
object detection
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Detection Rate

Trainable Modular Vision Systems: The SVM Approach

Papageorgiou, Oren, Osuna and Poggio, 1998

Training

| Crercomplete Fepresentation |

e

| SVM Classifier

— color29,poly3,+1
color2,paly2 +1
| = color29,poly2
- w28 poly3 41
| = w28 polye+1
| bwa8poly2

- i -
False Positive Rate

Gert Cauwenberghs

Testing

| Crvercomplete RFepre s ntation |

-:-::JI:—:----

Y ¥

SWM Classifier

Non-pEraon

ROC curve for various
image representations and
0 dimensions

Biopotential Sensing and Analog Signal Processing

— The number of support

vectors, in relation to
the number of training
samples and the vector
dimension, determine
the generalization
performance

Both training and run-
time performance are
severely limited by the
computational
complexity of
evaluating kernel
functions
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Kerneltron: Adiabatic Support Vector “Machine”
Karakiewicz, Genov, and Cauwenberghs, VLSI'’2006; CICC’2007

MVM

SUPPORT VECTG [ ADIABATIC DRIVERS

128 x 256 128 x 256
CID/DRAM CID/ D RAM
ARRAY ARRAY

[ |- ——

REFRESH

128 x 256
Yy As || CID/DRAM

y = Sign (Z ai yi K (XI ’X) + b) ARRAY

ieS

ADIABATIC DRIVERS

Correctly classified faces

ENES

i e 1.2 TMACS/mW

H u : H u — adiabatic resonant clocking conserves

charge energy

m - m !‘ ' energy efficiency on par with human

Correctly classified non-faces brain (1015 SynOP/S at 15W)

Classification results on MIT CBCL
face detection data
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Resonant Charge Energy Recovery

Karakiewicz, Genov, and Cauwenberghs, IEEE JSSC, 2007
capacitive load
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GiniISVM/FDKM Processor for Sequence Detection
Chakrabartty and Cauwenberghs (NIPS’2004)
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