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Introduction 
  

Cryosurgery, also referred to as cryoablation, is a surgical technique where undesirable or diseased 

tissue is frozen down using extremely low temperatures. In practice since the 1940s, Cryosurgery 

began as early surgeons were interested in the anesthetic properties of low temperatures. It was 

eventually discovered that most tissues will begin undergoing necrosis between -15°C to -40°C, and 

undesirable tissues were frozen from the exterior. It was not until the 1960s that the invention of 

surgical probes internally perfused with liquid nitrogen 

allowed for the insertion of such probes into the target tissue 

to freeze them from within. Several advantages of 

cryosurgery include the low invasiveness of the procedure, 

minimal blood flow, localizing of the site of surgery and 

reducing the recovery time and hospitalization time for the 

patient. In some instances, local anesthesia can be used in 

place of general anesthesia, which will result in less surgical 

complications. This means that in general the procedure will 

reduce costs for the patient.
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While the procedure can be easily performed, it is difficult 

to monitor the temperature of the tissue in real time, since it 

would require the insertion of temperature probes which 

increases the invasiveness of the surgery. Thus, many researchers have turned to mathematical 

modeling to better understand the temperature profile of 

the tissue. Here, we modified the bioheat equation to 

obtain,  

 

             
  

  
   

   

   
 

 

 
 
  

  
       

 

where u is the temperature in the tissue, r is the radius of a sphere away from the probe, k is the 

thermal conductivity of tissue, C is the specific heat of tissue and Qm is the metabolic heat 

generation.   

  

Fig 1. A Schematic of how cryosurgery 

is performed on a pancreatic lesion.
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Problem Formulation 

Establishment of geometry, boundary and initial conditions.  

 
In this study, we simulated a spherical mass of tissue that is isotropic in its thermal properties. In the 

middle of the tissue nests an ideal probe that occupies an infinitesimally small volume perfused by 

liquid nitrogen, thereby keeping the center of the sphere at -196°C. Our subsequent boundary 

condition is at a region infinitely far away from the probe, where the temperature should be that of 

body temperature, kept constant at 37°C. Before the start of the surgery, the temperature of the 

tissue should be constant at 37°C.  

 

However, in the freezing process, the cells will undergo a phase change at the freezing point, where 

they will be losing latent heat of freezing and temperature change in these cells should, theoretically, 

be 0. However, it has been observed clinically that the freezing state takes place across the 

temperature range -1°C > u > -8°C. Another point for consideration is that tissues have different 

thermal properties in their frozen/freezing/unfrozen states, which will be listed in the table of 

constants in the bioheat equation section below. Hence, our analysis will be broken down into three 

different temperature ranges, 37°C > u > -1°C when cells are unfrozen, -1°C > u > -8°C when cells 

are freezing and -8°C > u > -196°C when cells are frozen. This yields us three separate equations 

with different boundary conditions. Knowing the total amount of latent heat required, we took an 

average latent heat and combined it with the specific heat capacity constant so as to simplify the 

problem. We believe this range of temperature is as such since different tissues will contain a 

different composition of matrix components, organelles and solutes in it which will depress the 

freezing point.  

 

Bioheat Equation 

 
The temperature profile in the tissue can be described with Penne’s bioheat equation, which is a 

second ordered differential equation that goes by the form:  

 

 
       

  
                                    

 

Where C, Cb are the heat capacity of biological tissue and blood, X contains the Cartesian 

Coordinates x, y and z; k is the thermal conductivity of tissue, ωb is the perfusion of blood, Ta is the 

arterial temperature, u is the tissue temperature and Qm is the metabolic heat generation. The values 

are presented in the table of constants below.  

 



 
 

 

 

 

 

This equation can be further simplified in our instance if we consider that in rapidly freezing tissues, 

we will first cause vasoconstriction in the capillaries before freezing all the blood in the capillaries. 

In the absence of perfusion, the already small ωb term goes to zero. Also, cells will not be able to 

generate any metabolic heat when frozen, and Qm is nonexistent in temperatures below 0. Putting 

these together, before the cells are freezing we have a nonhomogenous differential equation and 

cells in the frozen and freezing states can be described with a homogenous differential equation 

instead. 

 

Upon inspection, it becomes apparent that the diffusion in the system is radial in spherical 

coordinates and independent of the other spherical coordinates, φ and θ. By converting Penne’s 

bioheat equation into spherical coordinates, we obtain the equation first mentioned in our 

introduction,  

  
  

  
   

   

   
 
 

 
 
  

  
      

 

Which we will solve analytically to obtain our temperature profile. It is worth mentioning here that 

in converting from a Cartesian coordinate system, we generate an additional “ 
 

 
 
  

  
”  term 

describing the dependence of change in temperature with time on the spatial variation of 

temperature in both the first and second order, which hints at a solution utilizing spherical Bessel’s 

functions. 

Analytical Solution 
 

Starting with our modified bioheat equation, 
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Fig 2. A table of constants for values used in the bio heat 

equation for all three temperature ranges 



And our boundary and initial conditions, 

1(0, )u t T  and ( , ) bu b t T . (2 and 3) 
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Where (2) and (3) are our boundary conditions, (7) is our initial condition and (4) through (6) are 

our constants.  

To solve the non-homogeneous equation with non-homogeneous boundary conditions, we first find 

a particular solution and then add it to the solution of the homogeneous equation. 

( , ) ( ) ( , )s hu r t u r u r t   (8) 

The particular solution is found by finding the steady state solution- us(r) which is u at infinite time. 

Therefore,  
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Solving the steady state equation and applying the boundary conditions, we get, 
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Subsequently, the homogeneous solution: 
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The boundary conditions of uh(r,t) are 
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The differential equation is 
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Using separation of variables, we get  

( , ) ( ) ( )hu r t p r g t  - which when substituted in (12) gives us 
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Solving for g, we get: 
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To solve for p(r) 
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To solve this equation, use the substitution: 
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integer order (m+1/2). The solution to this is: 

 and hence .... (17). 

The Spherical Bessel function of order m is defined as 

.  

Therefore, . On applying the boundary condition at r=b, we get . 
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The overall equation becomes, 
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 where L is a constant. 

To find L, apply the initial condition u(r,0)=37 °C. 
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Which simplifies to our analytical solution 
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The analytical solution was then plotted using MATLAB. However, we were unable to stitch the 

three different graphs together, and hence, will be presenting them separately in three separate plots. 

While these plots will not be able to tell us the temperature profile of tissue from 37°C to freezing at 

-196°C through our proposed 3-phase temperature change, we can see how the varying constants 

and conditions during each phase will change the temperature profile gradient. Pieced together, we 

can roughly see how the temperature progression will be changed. This comparison can be then 

drawn to our numerical solution, where we managed to stitch the solutions together. 

 

 

 

  
 
 
 
 
 
 
 
 
 

 

 

 

 

Fig 3a. Temperature 

profile for the tissue 

above freezing point. 

The temperature 

closest to the probe, x 

drops quickly and 

drastically. At steady 

state, temperature is a 

curve. This is only 

valid for u > -1°C 

Fig 3b. Temperature 

profile for the tissue 

during freezing. 

The temperature 

profile here drops 

much slower due to 

latent heat.  This is 

only valid for  



 
 

 

 
  

Fig 3c. Temperature 

profile for the tissue 

after freezing. 

The temperature 

profile here returns to 

dropping much faster.  

This is valid for a 

temperature range of     

-8°C > u. 

 



MATLAB codes 
 

For temperatures greater than -1 deg C. 
 

k1=0.005; 

c1=3.6; 

Qm1=0.042; 

b=7; 

tmesh=0:5:1000; 

nt=length(tmesh); 

rmesh=0:0.2:b; 

nr=length(rmesh); 

u=zeros(nr, nt); 

u(:,1)=37; 

u(1,:)=-150; 

for r=2:nr 

    a=-Qm1*((r-1)*0.2)^2/(6*k1)+(187/b +Qm1*b/(6*k1))*(r-1)*0.2-150; 

    for t=2:nt 

        k1=0.005; 

        c1=3.6; 

        sum=0; 

        for i=1:20 

            p=i*pi; 

            m=((sqrt(2*b/i))*sin(p*(r-1)*0.2/b))/((pi*(r-1)*0.2)); 



            sum=sum+m;             

        end 

        L=(1-((r-1)*0.2/b))*(187-Qm1*b*(r-1)*0.2/(6*k1))/sum; 

        u(r,t)=u(r,t)+L*sum*exp(((p/b)^2)*(-k1/c1)*(t-1)*5)+a;         

    end 

end 

u(1,:)=-150; 

surf  (tmesh, rmesh, u); 

 

For temperatures between -1 and -8 deg C 
k2=0.0125; 

c2=(250/7)+2.7; 

Qm2=0; 

tmesh=0:1:100; 

nt=length(tmesh); 

b=7; 

rmesh=0:0.2:b; 

nr=length(rmesh); 

u=zeros(nr, nt); 

u(:,1)=-1; 

u(1,:)=-150; 

for r=2:nr 

    a=-Qm2*((r-1)*0.2)^2/(6*k2)+(149/b +Qm2*b/(6*k2))*(r-1)*0.2-150; 

    for t=2:nt 



        sum=0; 

        for i=1:20 

            p=i*pi; 

            m=((sqrt(2*b/i))*sin(p*(r-1)*0.2/b))/((pi*(r-1)*0.2)); 

            sum=sum+m;             

        end 

        L=(1-((r-1)*0.2/b))*(149-Qm2*b*(r-1)*0.2/(6*k2))/sum; 

        u(r,t)=u(r,t)+L*sum*exp(((p/b)^2)*(-k2/c2)*(t-1)*1)+a;         

    end 

end 

surf  (tmesh, rmesh, u); 

     

  For temperatures below -8deg C 
k3=0.02; 

c3=1.8; 

Qm3=0; 

tmesh=0:0.1:10; 

nt=length(tmesh); 

b=7; 

rmesh=0:0.2:b; 

nr=length(rmesh); 

u=zeros(nr, nt); 

u(:,1)=-8; 

u(1,:)=-150; 



for r=2:nr 

    a=-Qm3*((r-1)*0.2)^2/(6*k3)+(142/b +Qm3*b/(6*k3))*(r-1)*0.2-150; 

    for t=2:nt 

        sum=0; 

        for i=1:20 

            p=i*pi; 

            m=((sqrt(2*b/i))*sin(p*(r-1)*0.2/b))/((pi*(r-1)*0.2)); 

            sum=sum+m;             

        end 

        L=(1-((r-1)*0.2/b))*(142-Qm3*b*(r-1)*0.2/(6*k3))/sum; 

        u(r,t)=u(r,t)+L*sum*exp(((p/b)^2)*(-k3/c3)*(t-1)*0.1)+a;         

    end 

end 

surf  (tmesh, rmesh, u); 

     

   

  



Numerical Solution 
 
Using MATLAB, we generated an algorithm that would take the forward finite difference for our 

second ordered differential equation, which we present below.  
 
 

 

 

 
 

 

  

Fig 4. Using the method of 

finite differences, we stitched 

the three conditions together 

to present this solution where 

we can see that in a time-

span of 100 seconds, we are 

able to freeze down a 

spherical radius of 4 cm 

(orange section). We also see 

a slightly less steep gradient 

around u = 0 from the graph 

because of  latent heat. 



Conclusion 
 
We can see from our solutions that the method of cryoablation is fast and efficient way of removing 

a harmful or undesirable piece of tissue. An exposure of a few minutes is enough to free down a 

sphere of 8 cm diameter. As expected, the latent heat is an obvious enough term to result in a 

slowdown of heat transfer as the gradient becomes less steep in both our analytical and the 

numerical.  Here we have also ignored perfusion, which other groups have actually shown to play 

only a small role in the heat generation. Furthermore in our study where most of the cells can be 

frozen down quickly, the blood would have simply frozen over and ceased to be a significant 

contributor to the heat generation in our tissue.  

 

We notice that the temperature at the boundary does not decrease. This is possibly because of the 

boundary condition we have set at r=7cm. Since the temperature there is fixed, the regions around it 

remain at a higher temperature close to 37deg C as there is an influx of heat into the sphere from the 

boundary. This assumption is crude but had to be made to simplify the problem. This is also why 

we have a linear variation of temperature with radius at steady state. 

 

There have been several groups working on injectable fluids that would increase the rate at which 

the tissue cools because of a dilution of fluids with a lower specific heat capacity that displaces the 

interstitial fluid. This results in a general lower specific heat capacity that improves the efficacy of 

cryosurgery.  
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