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Abstract

We present analog VLSI neuromorphic architectures for a general class of learning tasks,

which include supervised learning, reinforcement learning, and temporal di�erence learning.

The presented architectures are parallel, cellular, sparse in global interconnects, distributed

in representation, and robust to noise and mismatches in the implementation. They use a

parallel stochastic perturbation technique to estimate the e�ect of weight changes on net-

work outputs, rather than calculating derivatives based on a model of the network. This

\model-free" technique avoids errors due to mismatches in the physical implementation of

the network, and more generally allows to train networks of which the exact characteris-

tics and structure are not known. With additional mechanisms of reinforcement learning,

networks of fairly general structure are trained e�ectively from an arbitrarily supplied re-

ward signal. No prior assumptions are required on the structure of the network nor on the

speci�cs of the desired network response.

Keywords: Neural networks, neuromorphic engineering, reinforcement learning, stochastic

approximation

1 Introduction

Learning and adaptation are central to the design of neuromorphic VLSI systems that perform

robustly in variable and unpredictable environments.

Learning algorithms that are e�ciently implemented on general-purpose digital computers

do not necessarily map e�ciently onto analog VLSI hardware. Even if the learning algorithm

supports a parallel and scalable architecture suitable for analog VLSI implementation, inaccu-

racies in the implementation of the learning functions may signi�cantly a�ect the performance

of the trained system. Learning can only e�ectively compensate for inaccuracies in the network

implementation when their physical sources are contained directly inside the learning feedback

loop. Algorithms which assume a particular model for the underlying characteristics of the

system being trained perform poorer than algorithms which directly probe the response of the

system to external and internal stimuli.

�This work was supported by a National Science Foundation Career Award, and by ARPA/ONR under

MURI grant N00014-95-1-0409. Chip fabrication was provided through MOSIS.
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A second source of concern in the design of neuromorphic VLSI learning systems has

to do with the assumptions made on the particular form of the performance criterion being

optimized. In typical physical systems, the learning objectives can not be clearly de�ned in

terms of a target response or desired state of the system. Learning from external dicrete

rewards, in absence of a well-de�ned training signal, requires internal mechanisms of credit

assignment which make no prior assumptions on the causal relationships of the system and the

enviroment in which it operates. The stereotypical example of a system able to learn from a

discrete delayed reward or punishment signal is the pole-balancer trained with reinforcement

learning [18].

We use stochastic perturbative algorithms for model-free estimation of gradient informa-

tion [16] in a general framework that includes reinforcement learning under delayed and discon-

tinuous rewards [17]-[21], suitable for learning in physical systems of which the characteristics

nor the optimization objectives are properly de�ned. Stochastic error-descent architectures for

supervised learning [22] and computational primitives of reinforcement learning are combined

into an analog VLSI architecture which o�ers a modular and cellular structure, model-free dis-

tributed representation, and robustness to noise and mismatches in the implementation. The

combined architecture is applicable to the most general of learning tasks, where an unknown

\black-box" dynamical system is adapted using a external \black-box" reinforcement-based

delayed and possibly discrete reward signal.

As a proof of principle, we apply the model-free training-free adaptive techniques to blind

optimization of a second-order noise-shaping modulator for oversampled data conversion, con-

trolled by a neural classi�er. The only evaluative feedback used in training the classi�er is

a discrete failure signal which indicates when some of the integrators in the modulation loop

saturate.

In the following, we review supervised learning and stochastic perturbative techniques,

and present a corresponding architecture for analog VLSI implementation. We then cover

a generalized form of reinforcement learning, and introduce a stochastic perturbative analog

VLSI architecture for reinforcement learning. Neuromorphic implementations in analog VLSI

and system examples are also included.

2 Supervised Learning

In a metaphorical sense, supervised learning assumes the luxury of a committed \teacher", who

constantly evaluates and corrects the network by continuously feeding it target values for all

network outputs. Supervised learning can be reformulated as an optimization task, where the

network parameters (weights) are adjusted to minimize the distance between the targets and

actual network outputs. Generalization and overtraining are important issues in supervised

learning, and are beyond the scope of this paper.

Let y(t) be the vector of network outputs with components yi(t), and correspondingly

ytarget(t) be the supplied target output vector. The network contains adjustable parameters

(or weights) p with components pk, and state variables x(t) with components xi(t) (which may
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contain external inputs). Then the task is to minimize the scalar error index

E(p; t) =
X
i

jytargeti (t) � yi(t)j
� : (1)

in the parameters pi, using a distance metric with norm � > 0.

2.1 Gradient Descent

Gradient descent is the most common optimization technique for supervised learning in neural

networks, which includes the widely used technique of backpropagation (or \dynamic feed-

back") [23] for gradient derivation, applicable to general feedforward multilayered networks.

In general terms, gradient descent minimizes the scalar performance index E by specifying

incremental updates in the parameter vector p according to the error gradient rpE :

p(t + 1) = p(t) � � rpE(t) : (2)

One signi�cant problem with gradient descent and its variants for on-line supervised learning

is the complexity of calculating the error gradient components @E=@pk from a model of the

system. This is especially so for complex systems involving internal dynamics in the state

variables xj(t):
@E

@pk
=
X
i;j

@E(t)

@yi
�
@yi(t)

@xj
�
@xj(t)

@pk
(3)

where derivation of the dependencies @xj=@pk over time constitutes a signi�cant amount of

computation that typically scales super-linearly with the dimension of the network [22]. Fur-

thermore, the derivation of the gradient in (3) assumes accurate knowledge of the model of the

network (y(t) as a function of x(t), and recurrence relations in the state variables x(t)). Accu-

rate model knowledge cannot be assumed for analog VLSI neural hardware, due to mismatches

in the physical implementation which can not be predicted at the time of fabrication. Finally,

often a model for the system being optimized may not be readily available, or may be too

complicated for practical (real-time) evaluation. In such cases, a black-box approach to opti-

mization is more e�ective in every regard. This motivates the use of the well-known technique

of stochastic approximation [24] for blind optimization in analog VLSI systems. We apply

this technique to supervised learning as well as to more advanced models of \reinforcement"

learning under discrete delayed rewards. The connection between stochastic approximation

techniques and principles of neuromorphic engineering will be illustrated further below, in

contrast with gradient descent.

2.2 Stochastic Approximation Techniques

Stochastic approximation algorithms [24] have long been known as e�ective tools for con-

strained and unconstrained optimization under noisy observations of system variables [25].

Applied to on-line minimization of an error index E(p), the algorithms avoid the computational

burden of gradient estimation by directly observing the dependence of the index E on randomly
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applied perturbations in the parameter values. Variants on the Kiefer-Wolfowitz algorithm for

stochastic approximation [24], essentially similar to random-direction �nite-di�erence gradient

descent, have been formulated for blind adaptive control [26], neural networks [16],[27] and the

implementation of learning functions in VLSI hardware [28],[29],[22],[30].

The broader class of neural network learning algorithms under this category exhibit the

desirable property that the functional form of the parameter updates is \model-free", i.e.,

independent of the model speci�cs of the network or system under optimization. The model-

free techniques for on-line supervised learning are directly applicable to almost any observable

system with deterministic, slowly varying, and possibly unknown characteristics. Parallel im-

plementation of the stochastic approximation algorithms results into e�cient and modular

learning architectures that map well onto VLSI hardware. Since those algorithms use only di-

rect function evaluations and no derivative information, they are functionally simple, and their

implementation is independent of the structure of the system under optimization. They exhibit

robust convergence properties in the presence of noise in the system and model mismatches in

the implementation.

A brief description of the stochastic error-descent algorithm follows below, as introduced

in [22] for e�cient supervised learning in analog VLSI. The integrated analog VLSI continous-

time learning system used in [31], [32] forms the basis for the architectures outlined in the

sections that follow.

2.3 Stochastic Supervised Learning

Let E(p) be the error functional to be minimized, with E a scalar deterministic function in the

parameter (or weight) vector p with components pi. The stochastic algorithm speci�es incre-

mental updates in the parameters pi as with gradient descent (2), although using a stochastic

approximation to the true gradient

@E(t)

@pi

est

= �i(t) � Ê(t) (4)

where the di�erentially perturbed error

Ê(t) =
1

2�2
(E(p(t) + �(t)) � E(p(t)� �(t))) (5)

is obtained from two direct observations of E under complementary activation of a parallel

random perturbation vector �(t) with components �i(t) onto the parameter vector p(t). The

perturbation components �i(t) are �xed in amplitude and random in sign, �i(t) = �� with

equal probabilities for both polarities. The algorithm essentially performs gradient descent

in random directions in the parameter space, as de�ned by the position of the perturbation

vector.

As with exact gradient descent, iteration of the updates using (4) converges in the close

proximity of a (local) minimumof E , provided the perturbation amplitude � is su�ciently small.

The rate of convergence is necessarily slower than gradient descent, since every observation (5)
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only reveals scalar information about the gradient vector in one dimension. However, the

amount of computation required to compute the gradient at every update may outweigh the

higher convergence rate o�ered by gradient descent, depending on the model complexity of

the system under optimization. When applied to on-line supervised learning in recurrent

dynamical systems, the stochastic algorithm provides a net computational e�ciency rivaling

that of exact gradient descent. Computational e�ciency is de�ned in terms of the total number

of operations required to converge, i.e., reach a certain level of E . A formal derivation of the

convergence properties is presented in [22].

2.4 Supervised Learning Architecture

While alternative optimization techniques based on higher-order extensions on gradient de-

scent will certainly o�er superior convergence rates, the above stochastic method achieves its

relative e�ciency at a much reduced complexity of implementation. The only global opera-

tions required are the evaluations of the error function in (5), which are obtained from direct

observations on the system under complementary activation of the perturbation vector. The

operations needed to generate and apply the random perturbations, and to perform the param-

eter update increments, are strictly local and identical for each of the parameter components.

The functional diagram of the local parameter processing cell, embedded in the system under

optimization, is shown in Figure 1. The complementary perturbations and the correspond-

ing error observations are performed in two separate phases on the same system, rather than

concurrently on separate replications of the system. The sequential activation of the comple-

mentary perturbations and corresponding evaluations of E are synchronized and coordinated

with a three-phase clock:

�0 : E(p; t)

�+ : E(p+ �; t) (6)

�� : E(p� �; t) :

This is represented schematically in Figure 1 by a modulation signal �(t), taking values

f�1; 0; 1g. The extra phase �0 (�(t) = 0) is not strictly needed to compute (5)|it is useful

otherwise, e.g. to compute �nite di�erence estimates of second order derivatives for dynamic

optimization of the learning rate �(t).

The local operations are further simpli�ed owing to the binary nature of the perturbations,

reducing the multiplication in (4) to an exclusive-or logical operation, and the modulation by

�(t) to binary multiplexing. Besides e�ciency of implementation, this has a bene�cial e�ect

on the overall accuracy of the implemented learning system, as will be explained in the context

of VLSI circuit implementation below.

2.5 Supervised Learning in Dynamical Systems

In the above, it was assumed that the error functional E(p) is directly observable on the system

by applying the parameter values pi. In the context of on-line supervised learning in dynamical
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Figure 1: Architecture implemen ting stochastic error-descent supervised learning. The learning

cell is locally embedded in the netw ork.The di�erential error index is evaluated globally, and

communicated to all cells.

systems, the error functional takes the form of the average distance of norm � betw eenthe

output and target signals over a moving time window,

E(p; ti; tf ) =
Z tf

ti

X
i

jytargeti (t0) � yi(t
0)j�dt0 ; (7)

which implicitly depends on the training sequence ytarget(t) and on initial conditions on the

internal state variables of the system. An on-line implementation prohibits simultaneous obser-

vation of the error measure (7) under di�erent instances of the parameter vector p, as would be

required to evaluate (5) for construction of the parameter updates. How ev er, when the train-

ing signals are periodic and the in terval T = tf � ti spans an integer multiple of periods, the

measure (7) under constant parameter values is approximately invariant to time. In that case,

the t w o error observations needed in (5) can be performed in sequence, under complementary

piecewise constant activation of the perturbation vector.

In the context of on-line supervised learning in dynamical systems, the requirement of

periodicity on the training signals is a limitation of the stochastic error-descent algorithm.

Next, this requirement will be relaxed, along with some more stringent assumptions on the

nature of supervised learning. In particular, a target training signal will no longer be necessary.

Instead, learning is based onan external rew ard signal that conveys only partial and delay ed

information about the performance of the network.

3 Learning From Delayed and Discrete Rewards

Supervised learning methods rely on a contin uous training signal that gives constant feedback

about the direction in which to steer the response of the network to improv e its performance.

This continuous signal is available in the form of target values ytarget(t) for the netw ork outputs

y(t). More widely applicable but also more challenging are learning tasks where target outputs
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or other continuous teacher feedback are not available, but instead only a non-steady, delayed

reward (or punishment) signal is available to evaluate the quality of the outputs (or actions)

produced by the network. The di�culty lies in assigning proper credit for the reward (or

punishment) to actions that where produced by the network in the past, and adapting the

network accordingly in such a way to reinforce the network actions leading to reward (and

conversely, avoid those leading to punishment).

3.1 Reinforcement Learning Algorithms

Several iterative approaches to dynamic programming have been applied to solve the credit

assignment problem for training a neural network with delayed rewards [17]-[21]. They all in-

voke an \adaptive critic element" which is trained along with the network to predict the future

reward signal from the present state of the network. We de�ne \reinforcement learning" essen-

tially as given in [18], which includes as special cases \time di�erence learning" or TD(�) [19],

and, to some extent, Q-learning [20] and \advanced heuristic dynamic programming" [21].

The equations are listed below in general form to clarify the similarity with the above super-

vised perturbative learning techniques. It will then be shown how the above architectures are

extended to allow learning from delayed and/or impulsive rewards.

Let r(t) be the discrete delayed reward signal for state vector x(t) of the system (compo-

nents xj(t)). r(t) is zero when no signal is available, and is negative for a punishment. Let

y(t) be the (scalar) output of the network in response to an input (or state) x(t), and q(t)

the predicted future reward (or \value function") associated with state x(t) as produced by

the adaptive critic element. The action taken by the system is determined by the polarity of

the network output, sign(y(t)). For example, in the pole balancing experiment of [18], y(t)

is hard-limited and controls the direction of the �xed-amplitude force exterted on the moving

cart. Finally, let w and v (components wi and vi) be the weights of the network and the

adaptive critic element, respectively. Then the weight updates are given by

�wi(t) = wi(t+ 1)� wi(t) (8)

= � r̂(t) � ei(t)

�vi(t) = vi(t + 1)� vi(t) (9)

= � r̂(t) � di(t)

where the \eligibility" functions ei(t) and di(t) are updated as

ei(t + 1) = �ei(t) + (1� �) sign(y(t))
@y(t)

@wi

(10)

di(t + 1) = �di(t) + (1� �)
@q(t)

@vi

and the reinforcement r̂(t) is given by

r̂(t) = r(t) + 
q(t) � q(t� 1) : (11)
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The parameters � and � de�ne the time span of credit assigned by ei(t) and di(t) to actions in

the past, weighting recent actions stronger than past actions:

e(t) = (1� �)
t�1X

t0=�1

�t�t
0
�1 sign(y(t0))

@y(t0)

@wi

(12)

d(t) = (1� �)
t�1X

t0=�1

�t�t
0
�1@q(t

0)

@vi
:

Similarly, the parameter 
 de�nes the time span for the prediction of future reward by q(t), at

convergence:

q(t) �
1X

t0=t+1


t
0
�t�1r(t0) : (13)

For 
 = 1 and y � q, the equations reduce to TD(�). Convergence of TD(�) with probability

one has been proven in the general case of linear networks of the form q =
P

vixi [33].

Learning algorithms of this type are neuromorphic in the sense that they emulate classical

(pavlovian) conditioning in pattern association as found in biological systems [6] and their

mathematical and cognitive models [34],[7]. Furthermore, as shown below, the algorithms lend

themselves to analog VLSI implementation in a parallel distributed architecture which, unlike

more complicated gradient-based schemes, resembles the general structure and connectivity of

biological neural systems.

3.2 Reinforcement Learning Architecture

While reinforcement learning does not perform gradient descent of a (known) error functional,

the eligibility functions ei(t) and di(t) used in the weight updates are constructed from deriva-

tives of output functions to the weights. The eligibility functions in equation (10) can be

explicitly restated as (low-pass �ltered) gradients of an error function

E(t) = jy(t)j+ q(t) (14)

with

ei(t+ 1) = � ei(t) + (1� �)
@E(t)

@wi

(15)

di(t+ 1) = � di(t) + (1� �)
@E(t)

@vi
:

Rather than calculating the gradients in (15) from the network model, we can again apply

stochastic pertubative techniques to estimate the gradients from direct evaluations on the net-

work. Doing so, all properties of robustness, scalability and modularity that apply to stochastic

error descent supervised learning apply here as well. As in (4), stochastic approximation esti-

mates of the gradient components in (15) are

@E(t)

@wi

est

= !i(t) Ê(t) (16)
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@E(t)

@vi

est

= �i(t) Ê(t)

where the di�erential perturbed error

Ê(t) =
1

2�2
(E(w + !;v + �; t)� E(w � !;v � �; t)) (17)

is obtained from two-sided parallel random perturbation w � ! simultaneous with v � �

(j!ij = j�ij = �).

A side bene�t of the low-pass �ltering of the gradient in (15) is an improvement of the

stochastic gradient estimate (16) through averaging. As with stochastic error descent super-

vised learning, averaging reduces the variance of the gradient estimate and produces learning

increments that are less stochastic in nature, although this is not essential for convergence of

the learning process [22].

Figure 2 shows the block diagram of a reinforcement learning cell and an adaptive critic

cell, with stochastic perturbative estimation of the gradient according to (16). LP� and LP�

denote �rst-order low-pass �lters (15) with time constants determined by � and �. Other than

the low-pass �ltering and the global multiplicative factor r̂(t), the architecture is identical to

that of stochastic error descent learning in Figure 1. As before, the estimation of Ê(t) does not

require separate instances of perturbed and non-perturbed networks shown in Figure 2, and

can be computed sequentially by evaluating the output of the network and adaptive critic in

three phases for every cycle of t:

�0 : E(w;v; t)

�+ : E(w+ !;v + �; t) (18)

�� : E(w� !;v � �; t) :

In systems with a continuous-time output response, we assume that the time lag between

consecutive observations of the three phases of E is not an issue, which amounts to choosing

an appropriate sampling rate for t in relation to the bandwidth of the system.

Similarities between the above cellular architectures for supervised learning and reinforce-

ment learning are apparent: both correlate local perturbation values �i, !i or �i with a global

scalar index Ê that encodes the di�erential e�ect of the perturbations on the output, and both

incrementally update the weights pi, wi or vi accordingly. The main di�erence in reinforcement

learning is the additional gating of the correlate product with a global reinforcement signal r̂

after temporal �ltering. For many applications, the extra overhead that this implies in hard-

ware resources is more than compensated by the utility of the reward-based credit assignment

mechanism, which does not require an external teacher. An example is given below in the case

of oversampled A/D conversion.

3.3 System Example: Stable Higher-Order Noise-Shaping Modulation

We evaluated both exact gradient and stochastive perturbative embodiments of the reinforce-

ment learning algorithms on an adaptive neural classi�er, controlling a higher-order noise-
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z-1

ωi(t)
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Figure 2: General architecture implemen ting reinforcement learning using stochastic gradient

approximation. (a) Reinforcement learning cell. (b) Adaptive critic cell.
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shaping modulator used for oversampled A/D data conversion [37]. The order-n modulator

comprises a cascade of n integrators xi(t) operating on the di�erence between the analog input

u(t) and the binary modulated output y(t):

x0(t+ 1) = x0(t) + a (u(t) � y(t)) (19)

xi(t+ 1) = xi(t) + a xi�1(t) ; i = 1; � � �n� 1

where a = 0:5. The control objective is to choose the binary sequence y(t) such as to keep the

excursion of the integration variables within bounds, jxi(t)j < xsat [36].

For the adaptive classi�er, we specify a one-hidden-layer neural network, with inputs xi(t)

and output y(t). The network has m hidden units, a tanh(:) sigmoidal nonlinearity in the

hidden layer, and a linear output layer. For the simulations we set n = 2 and m = 5. The case

n = 2 is equivalent to the single pole-balancing problem [18].

The only evaluative feedback signal used during learning is a failure signal which indicates

when one or more integration variables saturate, jxi(t)j � xsat. In particular, the signal r(t)

counts the number of integrators in saturation:

r(t) = �b
X
i

H(jxi(t)j � xsat) (20)

where b = 10, and where H(:) denotes a step function (H(x) = 1 if x > 0 and 0 otherwise).

The adaptive critic q(t) is implemented with a neural network of identical structure as for y(t).

The learning parameters in (8), (10) and (11) are � = 0:8, � = 0:7, 
 = 0:9, � = 0:05 and

� = 0:001. These values are consistent with [18], adapted to accommodate for di�erences in

the time scale of the dynamics (19). The perturbation strength in the stochastic version is

� = 0:01.

Figure 3 shows the learning performance for several trials of both versions of reinforcement

learning, using exact and stochastic gradient estimates. During learning, the input sequence

u(t) is random, uniform in the range �0:5 � � �0:5. Initially, and every time failure occurs

(r(t) < 0), the integration variables xi(t) and eligibilities ek(t) and dk(t) are reset to zero.

Qualitative di�erences observed between the exact and stochastic versions in Figure 3 are

minor. Further, in all but one of the 20 cases tried, learning has completed (i.e., consequent

failure is not observed in �nite time) in fewer than 20 consecutive trial-and-error iterations.

Notice that a non-zero r(t) is only generated at failure, i.e., less than 20 times, and no other

external evaluative feedback is needed for learning.

Figure 4 quanti�es the e�ect of stochastic perturbative estimation of the gradients (15)

on the quality of reinforcement learning. The correlation index c(t) measures the degree of

conformity in the eligibilities (both ei(t) and di(t)) between stochastic and exact versions of

reinforcement learning. Correlation is expressed as usual on a scale from �1 to 1, with c(t) = 1

indicating perfect coincidence. While c(t) is considerably less than 1 in all cases, c(t) > 0 about

95 % of the time, meaning that on average the sign of the parameter updates (8) for exact

and stochastic versions are consistent in at least 95 % of the cases. The scatterplot c(t) vs.

r̂(t) also illustrates how the adaptive critic produces a positive reinforcement r̂(t) in most
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Figure 3: Simulated performance of stochastic perturbative (�) and gradient-based (�) re-

inforcement learning in a second-order noise-shaping modulator. Time betw eenfailures for

consecutive trials from zero initial conditions.

of the cases, even though the \reward" signal r(t) is never positive by construction. P ositive

reinforcement r̂(t) under idle conditions of r(t) is desirable for stability. Notice that the failure-

driven punishment points (where r(t) < 0) are o�-scale of the graph and strongly negative.

We tried reinforcement learning on higher-order modulators, n = 3 and higher. Both exact

and stochastic versions were successful for n = 3 in the majority of cases, but failed to converge

for n = 4 with the same parameter settings. On itself, this is not surprising since higher-order

delta-sigma modulators tend to become increasingly prone to unstabilities and sensitive to

small changes in parameters with increasing order n, which is why they are almost never used

in practice [37]. It is possible that more advanced reinforcement learning techniques suc h

as \Advanced Heuristic Dynamic Programming" (AHDP) [21] would succeed to converge for

orders n > 3. AHDP o�ers improv ed learning e�ciency using a more advanced, gradient-based

adaptive critic element for prediction of reward, although it is not clear at present how to map

the algorithm e�ciently onto analog VLSI.

The above stoc hastic perturbative arc hitectures for both supervised and reinforcement

learning support common \neuromorphs" and corresponding analog VLSI implementations.

Neuromorphs of learning in analog VLSI are the subject of next section.
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Figure 4: E�ect of stochastic perturbative gradient estimation onthe reinforcement learning.

c(t) quanti�es the degree of conformity in the eligibilities ei(t) and di(t) between exact and

stoc hastic versions.

4 Neuromorphic Analog VLSI Learning

4.1 Adaptive Circuits

The model-free nature of the stochastic perturbative learning algorithms does not impose any

particular conditions on the implementation of computational functions required for learning.

By far the most critical element in limiting learning performance is the quality of the parameter

update increments and decrements, in particular the correctness of their polarity. Relative


uctuations in amplitude of the learning updates do not a�ect the learning process to �rst

order, since their e�ect is equivalent to relative 
uctuations in the learning rate. On the other

hand, errors in the polarity of the learning updates might adversely a�ect learning performance

ev en at small update amplitudes.

A binary controlled charge-pump adaptive element is described next. O�ering precise

control of the update polarity, this circuit element provides the primitives for learning as well

as memory in the analog VLSI systems covered further below.

4.1.1 Charge-pump adaptive element

Figure 5 shows the circuit diagram of a charge-pump adaptive element implemen ting a volatile

synapse. The circuit is a simpli�ed version of the charge pump used in [14] and [32]. When

enabled by ENn and ENp (at GND and Vdd potentials, respectively), the circuit generates

an incremental update of which the polarity is determined by POL. The amplitude of the
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Figure 5: Charge-pump adaptive element implementing a volatile synapse.

current supplying the incremental update is determined by gate voltages Vbn and Vbp, biased

deep in subthreshold to allow �ne (sub-fC) increments if needed. The increment amplitude is

also determined by the duration of the enabled current, controlled by the timing of ENn and

ENp. When both ENn and ENp are set midway between GND and Vdd, the current output

is disabled. Notice that the switch-o� transient is (virtually) free of cloc k feedthroughcharge

injection, because the current-supplying transistors are switched from their source terminals,

with the gate terminals being kept at constant voltage [14].

Measurements on a charge pump with C = 0:5 pF fabricated in a 2 �m CMOS process are

shown in Figure 6. Under pulsed activation of ENn and ENp, the resulting voltage increments

and decrements are recorded as a function of the gate bias voltages Vbn and Vbp, for both

polarities of POL, and for three di�erent values of the pulse width �t (23 �sec, 1 msec and

40 msec). In all tests, the pulse period extends 2 msec beyond the pulse width. The exponen-

tial subthreshold characteristics are evident from Figure 6, with increments and decrements

spanning four orders of magnitude in amplitude. The lower limit is mainly determined by

junction diode leakage currents, as shown in Figure 6 (a) for �t = 0 (0.01 mV per 2 msec

interv al atroom temperature). This is more than adequate to accommodate learning ov era

typical range of learning rates. Also, the binary control POL of the polarity of the update

is e�ective for increments and decrements down to 0.05 mV in amplitude, corresponding to

charge transfers of only a few hundred electrons.

4.1.2 Analog storage

Because of the volatile nature of the adaptive element used, a dynamic refresh mechanism is

required if long-term local storage of the weight values after learning is desired. A robust and

e�cient self-contained mechanism that does not require external storage is \partial incremental

refresh" [14]

pi(t+ 1) = pi(t)� � Q(pi(t)) : (21)
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obtained from binary quantization Q of the parameter value. Stable discrete states of the

analog dynamic memory under periodic actication of (21) are located at the positive transitions

of Q, illustrated in Figure 7. Long-term stability and robustness to noise and errors in the

quantization requires that the separation between neighboring discrete states � be much larger

than the amplitude of the parameter updates �, which in turn needs to exceed the spontaneous

drift in the parameter value due to leakage between consecutive refresh cycles [14].

Partial incremental refresh can be directly implemented using the adaptive element in

Figure 8 by driving POL with a binary function of the weight value [15]. As in [15], the

binary quantization function can be multiplexed over an array of storage cells, and can be

implemented by retaining the LSB from A/D/A conversion [41] of the value to be stored.

Experimental observation of quantization and refresh in a fabricated 128-element array of

memory cells has con�rmed stable retention of analog storage at 8-bit e�ective resolution over

a time interval exceeding 109 refresh cycles (several days) [15].

A non-volatile equivalent of the charge-pump adaptive element in Figure 5, which does not

require dynamic refresh, is described in [9]. Correspondingly, a non-volatile learning cell per-

forming stochastic error descent can be obtained by substitution of the core adaptive element

in Figure 8 below, and more intricate volatile and non-volatile circuits implementing stochastic

reinforcement learning can be derived from extensions on Figure 8 and [9]. The non-volatile

solution is especially attractive if long-term storage is a more pressing concern than speed of

adaptation and 
exibility of programming.

4.1.3 Stochastic perturbative learning cell

The circuit schematic of a learning cell implementing stochastic error descent is given in Fig-

ure 8. The incremental update ���iÊ to be performed in (5) is �rst decomposed in amplitude

and sign components. This allows for a hybrid digital-analog implementation of the learning

cell, in which amplitudes of certain operands are processed in analog format, and their polar-

ities implemented in logic. Since j�ij � 1, the amplitude �jÊj is conventiently communicated

as a global signal to all cells, in the form of two gate voltages Vbn and Vbp. The (inverted)

polarity POL is obtained as the (inverted) exclusive-or combination of the perturbation �i and

the polarity of Ê. The decomposition of sign and amplitude ensures proper convergence of the

learning increments in the presence of mismatches and o�sets in the physical implementation

of the learning cell. This is because the polarities of the increments are more accurately im-

plemented through logic-controlled circuitry, which are independent of analog mismatches in

the implementation.

The perturbation �i is applied to pi in three phases (6) by capacitive coupling onto the

storage node C. The binary state of the local perturbation �i selects one of two global per-

turbation signals to couple onto C. The perturbation signals (V +
� and its complement V �

� )

globally control the three phases �0, �+ and �� of (6), and set the perturbation amplitude

�. The simple con�guration using a one-bit multiplexer is possible because each perturbation

component can only take one of two values ��.

16



ENp

ENn

POL

Vbp

Vbn

pi(t) + φ(t) πi(t)

Cstore

Cperturb

πi πi

Vσ
+ Vσ

-

πi

πi

sign(ε)
^

Figure 8: Circuit schematic of a learning cell implemen ting stochastic error descent, using the

charge pump adaptive element.

4.2 Learning Systems

4.2.1 Contin uous-timetrajectory learning in an analog VLSI recurrent neural

network

On-chip learning of continuous-time recurrent dynamics has been demonstrated in an analog

VLSI neural netw ork,using stochastic error descent [31],[32 ]. We brie
y summarize the ar-

chitecuture, operation and results here. The chip contains an integrated netw orkof six fully

interconnected continuous-time neurons

�
d

dt
xi = �xi +

6X
j=1

Wij �(xj � �j) + yi ; (22)

with xi(t) the neuron states representing the outputs of the netw ork,yi(t) the external inputs

to the netw ork, and�(:) a sigmoidal activation function. The 36 connection strengthsWij and

6 thresholds �j constitute the free parameters to belearned, and the time constant � is kept

�xed and identical for all neurons.

The netw ork is trained with target output signalsxT1 (t) and xT2 (t) for tw o neuron outputs,

i = 1; 2. The other four neurons are hidden to the output, and the internal dynamics of

these hidden neuron state variables play an important part in optimizing the output. Learning

consists of minimizing the time-av eraged error (7) with respect to the parameters Wij and

�j , using stochastic error descent. For a consistent evaluation of the stochastic gradient, the

perturbed function measurements E(p � �) are performed on a time scale signi�cantly (60

times) larger than the period of the target signals.

All local learning functions, including the generation of pseudo-random perturbations and

the stoc hastic learningupdate, are embedded with the synaptic functions (22) in a scalable
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Figure 9: Micrograph of an analog VLSI recurrent neural network chip that learns continuous-

time internal dynamics using stochastic error-descent. Center: 6 � 7 array of weight and

threshold parameter cells with integrated learning and storage functions. Bottom: random

binary array generator providing the parallel parameter perturbations.
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(a) (b) 

Figure 10: Oscillograms of the network outputs and target signals after learning, (a) under

weak residual teacher for cing, and (b) with teacher for cing removed. Top traces: x1(t) and

x1
T (t). Bottom traces: x2(t) and x2

T (t).

2-D arra yof parameter cells Wij and �j . The circuitry implemen ting the learning functions

is essentially that of Figure 8. The dynamic refresh scheme described above is incorporated

locally in the parameters cell for long-term storage of the parameters. A micrograph of the

chip is shown in Figure 9. P ow er dissipation is 1.2 mW from a 5 V supply, for a 1 kHz signal

being trained.

The results of training the chip with a periodic analog target signal representing a

quadrature-phase oscillator are illustrated in Figure 10. Learning is achieved in roughly 1500

training cycles of 60 msec each, using \teacher forcing" during training for synchronization

betw een netw ork and target dynamics, and by careful but unbiased choice of initial conditions

for the w eight parameters to avoidlocal minima. These conditions are less critical in more

general applications of nonlinear system identi�cation where the netw orkduring training is

presented input signals to be associated with the the target output signals.

4.2.2 Reinforcement learning in a VLSI neural classi�er for nonlinear noise-

shaping delta-sigma modulation

A VLSI classi�er consisting of 64 locally tuned, hard-thresholding neurons w as trainedusing

reinforcement learning to produce stable noise-shaping modulation of orders one and tw o [36].

While this system does not implemen t the stochastic version of reinforcement learning studied

above, it presents a particularly simple VLSI implementation and serves to demonstrate some

of the properties also expected of more advanced implementations that incorporate stochastic

learning with continuous neurons.

Similar to the \boxes-system" used in [18], the classi�er implements a look-up table from

a binary address-encoded representation of the state space spanned by u(t) and xi(t). In

particular, y(t) = y�(t) and q(t) = q�(t) where �(t) is the index of the address determined

by hard-limiting thresholding operations on the components u(t) and xi(t). Each neuron cell,

identi�ed by address k, locally stores the tw oparameters yk and qk in analog format, and
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updates them according to the external reinforcement signal de�ned in (20).

In its simplest form, the implemented reinforcement learning performs updates in the the

eligible yk parameters opposite to their thresholded output values, each time failure occurs

(r(t) = �1). Hysteresis is included in the dynamics of the yk updates to ensure some degree

of stability under persistent negative reinforcement during training, even without use of the

adaptive critic qk. Although this simple form of reinforcement learning with non-adaptive

hysteretic critic is not meant to be adequate for more complex tasks, it has proven su�cient

to train the VLSI neural classi�er to produce noise-shaping modulation of orders 1 and 2.

The integrated system contains a cascade of 6 integrators, an 11-bit address state encoder,

and an address-encoded classi�er with 64 reinforcement learning neurons on a 2.2 mm� 2.2 mm

chip in 2 �mCMOS technology. A record of a learning experiment reinforcing �rst-order noise-

shaping modulation in the �rst integrator, using 2-bit address encoding �(t) of the polarities

of u(t) and x1(t), is shown in Figure 11. As in the simulations above, the input sequence

u(t) during training is uniformly random with half full-scale maximum amplitude (1 V pp),

and the integrator variables xi(t) as well as the eligibilities ek(t) are reset to zero after every

occurrence of failure, r(t) = �1. The dynamics of the state variables and parameters recorded

in Figure 11 shows convergence after roughly 150 input presentations. The time step in the

experiments was T = 2:5 msec, limited by the bandwidth of the instrumentation equipment

in the recording. Notice that the learned pattern of yk at convergence conforms to that of

a standard �rst-order delta-sigma modulator [37], which it should in this rather simple case.

Learning succeeded at various values of the learning constants � and �, a�ecting mainly the

rate of convergence.

Tests for higher-order noise-shapingmodulation on the same learning systemonly succeeded

for order n = 2, using a total of 8 parameters yk. For higher orders of noise-shaping, a

continuous neuron representation and learning are required, as the above simulations of the

stochastic reinforcement system indicate.

4.3 Structural Properties

The general structure of neuromorphic information processing systems has some properties

di�erentiating them from some more conventional human-engineered computing machinery,

which are typically optimized for general-purpose digital programming. Some of the desirable

properties for neuromorphic architectures are: fault-tolerance and robustness to noise through

a redundant distributed representation, robustness to changes in operating conditions through

on-line adaptation, real-time bandwidth through massive parallelism, and modularity as a

result of locality in space and time. We illustrate these properties in the two architectures for

supervised and reinforcement learning in Figures 1 and 2. Since both architectures are similar,

a distinction between them will not explicitly be made.
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Figure 11: First-order modulator experiments: recorded dynamics of state variables and

parameters during on-chip learning.

4.3.1 F ault-tolerancethrough statistical av eragingin a distributed representa-

tion:

Direct implementation of gradient descent, based on an explicit model of the net w ork,is

prone to errors due to unaccounted discrepancies in the network model and mismatches in

the physical implemen tation of the gradient. This is due to the localized representation in the

computation of the gradient as calculated from the model, in which any discrepancy in one part

may drastically a�ect the �nal result. For this and other reasons, it is unlikely that biology

performs explicit gradient calculation on complex systems such as recurrent neural net w orks

with contin uous-time dynamics. Stochastic error descent avoids errors of various kinds b y

ph ysically probingthe gradient onto the system rather than deriving it. Using simultaneous

and uncorrelated parallel perturbations of the weights, the e�ect of a single error on the

outcome is thus signi�cantly reduced, b y virtue of the statistical nature of the computation.

How ev er, critical in the accuracy of the implemen ted learning system is the precise derivation

and faithful distribution of the global learning signals Ê(t) and r̂(t). Stictly speaking, it is

essential only to guarantee the correct polarity and not the exact amplitude of the global

learning signals, as implemen ted in Figure 8.
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4.3.2 Robustness to changes in the environment through on-line adaptation:

This property is inherent to the on-line incremental nature of the studied supervised and rein-

forcement learning algorithms, which track structural changes in Ê(t) or r̂(t) on a characteristic

time scale determined by learning rate constants such as � or � and �. Learning rates can be

reduced as convergence is approached, as in the popular notion in cognitive neuroscience that

neural plasticity decreases with age and experience.

4.3.3 Real-time bandwidth through parallelism:

All learning operations are performed in parallel, with exception of the three-phase pertur-

bation scheme (6) or (18) to obtain the di�erential index Ê under sequential activation of

complementary perturbations � and ��. We note that the synchronous three-phase scheme is

not essential and could be replaced by an asynchronous perturbation scheme as in [16] and [42].

While this probably resembles biology more closely, the synchronous gradient estimate (4) us-

ing complementary perturbations is computationally more e�cient as it cancels error terms up

to second order in the perturbation strength � [24]. In the asynchronous scheme, one could

envision the role of random noise naturally present in biological systems as a source of pertur-

bations, although it is not clear how noise sources can be e�ectively isolated to produce the

correlation measures necessary for gradient estimation.

4.3.4 Modular architecture with local connectivity:

The learning operations are local in the sense that a need for excessive global interconnects

between distant cells is avoided. The global signals are few in number and common for all

cells, which implies that no signal interconnects are required between cells across the learning

architecture, but all global signals are communicated uniformly across cells instead. This

allows to embed the learning cells directly into the network (or adaptive critic) architecture,

where they interface physically with the synapses they adapt, as in biological systems. The

common global signals include the di�erential index Ê(t) and reinforcement signal r̂(t), besides

common bias levels and timing signals. Ê(t) and r̂(t) are obtained by any global mechanism

that quanti�es the \�tness" of the network response in terms of teacher target values or discrete

rewards (punishments). Physiological experiments support evidence of local (hebbian [5]) and

sparsely globally interconnected (reinforcement [6]) mechanisms of learning and adaptation in

biological neural systems [3],[4].

5 Conclusion

Neuromorphic analog VLSI architectures for a general class of learning tasks have been pre-

sented, along with key components in their analog VLSI circuit implementation. The ar-

chitectures make use of distributed stochastic techniques for robust estimation of gradient

information, accurately probing the e�ect of parameter changes on the performance of the
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network. Two architectures have been presented: one implementing stochastic error-descent

for supervised learning, and the other implementing a stochastic variant on a generalized form

of reinforcement learning. The two architectures are similar in structure, and both are suitable

for scalable and robust analog VLSI implementation.

While both learning architectures can operate on (and be integrated in) arbitrary systems

of which the characteristics and structure does not need to be known, the reinforcement learn-

ing architecture additionally supports a more general form of learning, using an arbitrary,

externally supplied, reward or punishment signal. This allows the development of more pow-

erful, generally applicable devices for \black-box" sensor-motor control which make no prior

assumptions on the structure of the network and the speci�cs of the desired network response.

We presented results that demonstrate the e�ectiveness of perturbative stochastic gradient

estimation for supervised learning and reinforcement learning, applied to nonlinear system

identi�cation and adaptive oversampled data conversion. A recurrent neural network was

trained to generate internal dynamics producing a target periodic orbit at the outputs. A

neural classi�er controlling the second-order noise-shaping modulator was trained for optimal

performance with no more evaluative feedback than a discrete failure signal indicating whenever

any of the modulation integrators saturate. The critical part in the VLSI implementation of

adaptive systems of this type is the precision of the polarity, rather than the amplitude, of

the implemented weight parameter updates. A binary controlled charge-pump provides voltage

increments and decrements of precise polarity spanning four orders of magnitude in amplitude,

with charge transfers down to a few hundred electrons.
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