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Beyond address-event

communication: dynamically-

reconfigurable spiking neural

systems
Large-scale artificial sensory information-pro-
cessing systems that emulate biological intel-
ligence when interfacing with their surround-
ings have been the holy grail of neuromorphic
engineering. The effort of our community
has concentrated on modeling neural struc-
tures and adaptive mechanisms in biology as
much as it has on efficient implementation
in real-time micropower hardware.

However, despite steady advances in the
scaling of VLSI technology, which promises
to deliver more transistors on a single chip
than neurons in our brain, it is neither fea-
sible nor advisable to integrate the full func-
tionality of a complete nervous system on a
single chip. Early experimentation with
neuromorphic systems revealed the need for
a multi-chip approach and a communication
protocol between chips to implement large
systems in a modular and scalable fashion.
Thus, the address-event representation
(AER) protocol was developed over a de-
cade ago and quickly became a universal ‘lan-
guage’ for neuro-morphic engineering sys-
tems to communicate neural spikes between
chips.1-7 However, AER is now used for func-

tions in addition to inter-chip communica-
tion. The Silicon Cortex project proposed us-
ing AER to connect detailed compartmental
models of neurons and synapses on multiple
chips,8,9 and a few different groups have used
AER to implement synaptic connectivity.4-7

Here we will concentrate on our inte-
grate-and-fire array transceiver (IFAT) chips,
which can be used to implement large-scale
neural networks in silicon with both synap-
tic connectivity and synaptic plasticity in the
address-domain.10,11 The newest IFAT chip12

implements 2,400 silicon neurons, each with
a single dynamically-programmable conduc-
tance-like synapse: both the synaptic ‘con-
ductance’ and the synaptic driving potential
can vary for each incoming event. Rather than
hardwiring connections between cells, the
network architecture and synaptic parameters
are stored off-chip in a RAM-based look-up
table (LUT). An external digital micro-con-
troller (MCU) provides the appropriate sig-
nals to configure synapses and route spikes
to their respective targets via an asynchro-
nous AER bus. A block diagram of the sys-
tem is shown in Figure 1.

During normal opera-
tion, the event-driven
microcontroller is acti-
vated when a presynaptic
neuron generates a spike.
The cell’s address is used
as an index into the LUT
and the data stored at that
location in RAM specifies
one or more postsynaptic
targets with their associ-
ated synaptic weights and
driving potentials. The
MCU then provides sig-
nals to the IFAT to con-
figure each synapse and
sends the events serially.
Any postsynaptic spikes
generated by this process
can either be sent back to

the IFAT (in recurrent mode) or sent off-chip
(in feed-forward mode), depending on the
data stored in RAM. Additionally, updates to
the network can be implemented by modify-
ing the LUT according to a spike-based learn-
ing rule computed by the MCU.11

A printed circuit board (Figure 2) inte-

grates the components of the IFAT system,
including 9,600 neurons on four IFAT chips,
128MB of non-volatile SRAM, a high-speed
8bit voltage DAC, a 200MHz FPGA, and a
32bit digital I/O (DIO) interface. The DAC
is used to control synaptic driving potentials,
while synaptic weights are specified by three
separate fields in the LUT: one each for the
size of the postsynaptic potential, the num-
ber of events to send, and the probability of
event transmission. External AER-compliant
hardware or a peripheral computer interface
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Figure 2. Printed circuit board integrating all
components of the IFAT system.

Figure 1: Block
diagram of IFAT
system.
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can communicate with the IFAT through the
DIO. The system is capable of implement-
ing over four million synapses.

Previous generations of the IFAT system10

have served a variety of applications. For in-
stance, Laplacian filters were implemented to
isolate vertical edges on static images:10 a task
that ran two orders of magnitude faster in
hardware than in simulation. Similar network
architectures can be employed to compute
arbitrary filter kernels by varying the pattern
of lateral connections between neurons. Even
more interesting applications arise by extend-
ing address-event synaptic connectivity to ad-
dress-domain synaptic plasticity. We imple-
mented spike-based learning rules by
monitoring the AER bus and dynamically up-
dating the LUT.11 Using this strategy with a
form of spike-timing dependent plasticity
(STDP), we constructed a network that could

On using the time domain...

from p. 5

a nuisance, is certainly not common among
electronic engineers. This view, inspired by
emerging neurophysiological coding models,
can definitely give new impulse to circuit
designs.

P. Häfliger
University of Oslo, Norway
E-mail: hafliger@ifi.uio.no
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detect correlated inputs and group them to-
gether. Subsequent work by other groups has
demonstrated that the resulting networks are
capable of preserving spike synchrony across
multiple levels of neural processing.13 Finally,
we recently built rudimentary neural spatio-
temporal filters and used them to process a
spike train produced by an AER retina.14 By
constructing an array of similar elements and
combining the appropriate outputs, it is pos-
sible to construct velocity-selective cells simi-
lar to those found in the medial-temporal cor-
tical area (MT) of the human brain.15

We believe that by combining analog
VLSI hardware with a digital microcontroller
and RAM, reconfigurable hardware neural
networks provide the ‘best of both worlds’:
analog cells efficiently model sophisticated
neural dynamics in real-time, while network
architectures can be reconfigured and adapted

in-site. The newest of these systems provide
a number of advantages over previous de-
signs, including more neurons, a richer pa-
rameter space, more biologically plausible
dynamics, and a higher degree of inter-con-
nectivity and plasticity. We expect them to
serve as useful tools for future investigations
of learning in large-scale neural networks. We
invite the readers to contact us for collabora-
tive opportunities on modeling of large-scale
biological neural circuits.
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