
Analog Integrated Circuits and Signal Processing, 18, 289–299 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Nonlinear Noise-Shaping Delta-Sigma Modulator with
On-Chip Reinforcement Learning∗

GERT CAUWENBERGHS

gert@bach.ece.jhu.edu

Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218-2686

Abstract. The stability and quality of noise shaping is a concern in the design of higher-order delta-sigma
modulators for oversampled analog-to-digital conversion. We reformulate noise-shaping modulation alternatively
as a nonlinear control problem, where the objective is to find the binary modulation sequence that minimizes signal
swing in a cascade of integrators operating on the difference between the input signal and the modulation sequence.
Reinforcement learning is used to adaptively optimize a nonlinear neural classifier, which outputs modulation bits
from the values of the input signal and integration state variables. Analogous to the pole balancing control problem,
a punishment signal triggers learning whenever any of the integrators saturate. Experimental results obtained from
a VLSI modulator with integrated classifier, trained to produce stable noise shaping modulation of orders one and
two, are presented. The classifier contains an array of 64 locally tuned, binary address-encoded neurons and is
trained on-chip with a variant on reinforcement learning.

Keywords: delta-sigma modulation, reinforcement learning, neural networks, analog VLSI

1. Introduction

Noise-shaping modulation architectures such as delta-
sigma modulators are attractive for high resolu-
tion oversampled A/D (analog-to-digital) data conver-
sion [1], trading bandwidth of a fast, low-resolution
converter for improved resolution by oversampling and
modulating the signal to push quantization noise out of
the signal band. Higher-order delta-sigma modulators
offer high resolution at significantly increased signal
bandwidths (lower oversampling ratios); however, they
are prone to instabilities for orders beyond two. Most
higher-order noise-shaping architectures considered so
far are direct linear extensions on the standard first-
order delta-sigma modulator, shown in Figure 1 (a).

∗This work was supported by NSF under Career Award MIP-
9702346 and by ARPA/ONR under MURI grant N00014-95-1-0409.
Chip fabrication was provided through MOSIS.

We approach noise-shaping modulation alternatively
as a nonlinear control problem, where the binary mod-
ulation sequence controls a “plant” which consists of
a cascade of integrators that operate on the quantiza-
tion error,i.e., the difference between analog input and
binary modulation sequences, shown in Figure 1 (b).
The optimal modulation sequence is defined as the one
which minimizes the energy (signal swing) of the inte-
gration variables. As we will show, this is equivalent
to minimizing the low-frequency in-band quantization
noise of the modulator. The control problem in our
formulation has strong similarities with the pole bal-
ancing problem, solved efficiently using reinforcement
learning [3].

It may seem counter-intuitive that adding more ana-
log circuit complexity to the design of a delta-sigma
modulator could improve rather than degrade perfor-
mance, due to increased sensitivity to noise and pro-
cess parameters. In the case considered here, the addi-

290 Cauwenberghs

(a)

(b)

Σ
u(t) y(t)x(t)

+
–

Q

Σ
u(t)

y(t)

x1(t)

+
–

NN

x2(t) xn(t)

Fig. 1. Noise-shaping modulators for oversampled A/D conver-
sion. (a) First-order delta-sigma modulator.(b) Generalized higher-
order structure with nonlinear classifier. All operations are sampled,
discrete-time.

tional circuitry does not affect the analog signal path,
but affects the quantized output only. By replacing the
quantizer by a more sophisticated nonlinear classifier
that adapts to the statistics of the input signal, noise-
shaping properties are improved and less quantization
noise leaks into the signal frequency band.

Before proceeding, it is important to point out, up
front, that the purpose of this paper isnot to intro-
duce alternative delta-sigma modulator topologies that
have better noise-shaping propertiesper se. Rather,
we investigate the use ofadaptivetechniques which,
combined with more powerful classifier structures and
intrincally more stable modulator topologies than used
here for demonstration purposes, are expected to yield
better noise-shaping performance, better in terms of
increased stability at higher orders and more uniform
spectral properties. The techniques applied here are
general, and are demonstrated on a simple example:
for a binary classifier, which is limited for practical use.
Although the results are verified through experimental
results from a VLSI implementation, the purpose of
this paper is thus not to propose new delta-sigma mod-
ulator topologies that are ready for practical use, but
to define new directions in research on adaptive sys-
tems for higher-order noise-shaping, in a longer-term
effort towards higher-performance oversampled data
converters.

We first define noise-shaping modulation in the non-
linear control framework, and then formulate reinforce-
ment learning as applied to the optimization problem.

Next, we present results on training a simple binary
address-encoded classifier to produce noise-shaping
modulation of integration orders 1 through 3, giving
rise to some interesting modulation structures. Fi-
nally, we present experimental results on an analog
VLSI modulator comprising a cascade of integrators
and an array of 64 locally tuned, address-encoded neu-
rons with on-chip learning on a 2µm CMOS chip.

2. Nonlinear Noise-Shaping Modulation

We state noise-shaping modulation for oversampled
A/D conversion as an optimal nonlinear control prob-
lem. The order-n modulator comprises a cascade ofn
integratorsxi(t) operating on the difference between
the analog inputu(t) and the binary (±1) modulated
outputy(t), Figure 1 (b):

x1(t+ 1) = x1(t) + a (u(t)− y(t)) (1)

xi(t+ 1) = xi(t) + a xi−1(t) , i = 2, · · ·n

with modulation gaina = 0.5. Notice that this choice
of noise-shaping filtering through successive integra-
tion is not critical, and the cascade of filters in (1) can
be replaced by a bank of filters, of which the last one
hasn poles located nearz = 1. For generality, denote
thez-transforms of then filters asHi(z), with

Xi(z) = Hi(z) (U(z)− Y (z)), i = 1, · · ·n (2)

or, equivalently

Y (z) = U(z)−Hi
−1(z) Xi(z), i = 1, · · ·n . (3)

The second term in (3) represents the error in quan-
tizing U(z) asY (z). The effect of noise shaping is
apparent from the high-pass nature of the noise trans-
fer function (NTF)Hi

−1(z), shaping the noise spec-
trumXi(z) to push low-frequency components outside
of the signal band. Although this is the same NTF as
appears in linear analysis of the delta-sigma modula-
tor [1], where it shapes quantization noise, we are not
making any assumptions on explicit use of aquantizer.
Rather, noise is considered as being contributed di-
rectly by the amplitude of the integration state variable
xi(t).

The control objective is to choose the binary se-
quencey(t) such as to minimize the energy of the
state variables|xi(t)|2 over time. This corresponds to
minimizing the power spectrum of the noise|Xi(z =
ejωT)|2 near zero frequencies,z ≈ 1. This in turn
yields a modulation outputY (z) which most faithfully

Reinforcement Learning∆Σ Modulator 291

represents the input signalU(z) at lower frequencies,
i.e., in the signal band.

Preference among componentsi in the minimiza-
tion of |xi(t)|2 is given to the last stage in the cascade,
i = n, which yields noise shaping of the highest order
n. The reason for still including then−1 intermediate
integration variables is because a cascade of integrators
easily saturates for even small perturbations of the in-
put. Saturation of thei-th integrator causes instability
of noise shaping at orderi, leading to cancellation of
the zero in the NTF in (3) at zero frequency (z = 1).
By still minimizing the preceding integrators in the
chain,xj(t) with j < i, stability of noise shaping is
enforced at least at a lower order, and at worst at order
one (j = 1). In other words, stability of noise-shaping
can be guaranteed at all times, albeit not necessarily at
the maximum order.

Because of the natural tendency of the integrators
to saturate, minimizing|xi(t)|2 is almost equivalent
to simply constraining the excursion of the integra-
tion variables within saturation limits,|xi(t)| < xsat.
Then the control objective becomes equivalent to that
in multi-segment pole balancing: control the move-
ment of a carty(t) driving a multi-segment pole under
gravity such as to maintain the segments upward along
the vertical axis, trying to confine segment excursions
xi(t) within limits of stability.

3. Reinforcement Learning

Reinforcement learning techniques are applicable to
general learning tasks defined by a discrete, delayed,
external reward or punishment signalr(t) which serves
as the only indication of performance available for
training [2, 3, 4, 5, 6]. The classical example where
reinforcement learning is applied is the pole-balancing
problem, which it efficiently solves [3]. Similarly, in
the context of noise-shaping modulation, we use a fail-
ure signal, indicating saturation in one or more of the
integrators, to reinforce stability of noise-shaping.

A nonlinear neural classifier, depicted in the box la-
beled “NN” in Figure 1 (b), produces the modulation
sequence from the state of the input and integrators,
y(t) = f(u(t), xi(t)). Similar to the “boxes-system”
used in [3], the classifier chosen here has locally tuned,
hard-thresholding neurons, effectively implementing a
look-up table from a binary address-encoded represen-
tation of the state space spanned byu(t) andxi(t). In
particular,y(t) = yχ(t) whereχ(t) is the index of the

address selected from address bits generated from the
sign of the componentsu(t) andxi(t):

U+(t) = sgn(u(t)) (4)

X+
i (t) = sgn(xi(t)) , i = 1, · · ·n .

This simple choice of input representation is by no
means designed to be optimal, but serves as a proof
of principle, transparent for interpretation and suited
to implementation in VLSI. Still, this representation
is powerful enough to produce first-order and second-
order noise shaping as illustrated below. The limita-
tions of this simple choice of classifier structure on per-
formance will be illustrated with experimental results,
and alternatives will be proposed, in Section 5.

As in [3], a “reward” signalr(t) is generated, equal
to zero as long as the modulator is stable, and−1 for
punishment when failure occurs (saturation of one or
more integrators). To reinforce past actionsy(t) of
the network leading to future rewardr(t), an “adaptive
critic element”q(t) is trained along with the network
to predict the future reward from the present state of
the network. Similar to the classifiery(t), the adaptive
critic q(t) is implemented as a look-up tableq(t) =
qχ(t) using the same address encodingχ(t) of the state
space.

We reformulate reinforcement learning defined in [3]
as follows. For a related exposition on reinforcement
learning in the framework of perturbative stochastic
learning, the reader is referred to [7]. Letyk andqk be
the adaptive parameters of the classifier and adaptive
critic, and letek denote the “eligibility” traces of the
corresponding neurons. The eligibility is used to keep
track of those neurons which were active in the recent
history, which become ”eligible” for parameter updates
under reinforcement. The parameter updates are then
given by:

yk(t+ 1) = yk(t) + α r̂(t) ek(t) yk(t) (5)

qk(t+ 1) = qk(t) + β r̂(t) ek(t)

where the internal (incremental) reinforcementr̂(t) is
constructed as

r̂(t) = r(t) + γq(t)− q(t− 1) (6)

and the eligibilitiesek(t) are updated as

ek(t+ 1) = λ ek(t) + (1− λ) k = χ(t)
= λ ek(t) otherwise (7)

with χ(t) the index of the address selected according
to (4).

292 Cauwenberghs

Table 1. Trained valuesyk for n = 1, 2.

U+

0
0
1
1

X1
+

0
1
0
1

y
 (n=1)

0
1
0
1

y
 (n=2)

 1
 1
 1
 1

 0
 0
 0
 0

X2
+

 0
 1
 1
 1

 0
 0
 0
 1

The results of applying reinforcement learning to a
classifier to stabilize a cascade of one and two integra-
tors are listed in Table 1 and illustrated in Figure 2.
The learning constants used in the simulations were
α = 0.5, β = 0.01, γ = 0.9 andλ = 0.8. During
training, the inputu(t) was presented4, 092 random
samples uniformly distributed in the[0.5 · · · 0.5] inter-
val.

Because of the simple functional form of the clas-
sifier (4), we can easily interpret the learned structure
from the values of the parameters at convergence, listed
in Table 1. Forn = 1, information on the polarity of
the input (U+) is discarded, and the classifier reduces
to a one-bit quantizery ≡ X+

1 as in the standard first-
order delta-sigma modulator. Forn = 2, the learning
apparently yielded a novel structure that uses the avail-
able information on the polaritiesU+, X+

1 andX+
2 in

the following way:

y(t) = 1 X+
1 = X+

2 = 1
= −1 X+

1 = X+
2 = −1

= U+ otherwise .
(8)

With no more information onu(t) andxi(t) available to
the classifier, this policy is indeed most sensible in order
to minimize risk of future saturation of the integrators.

The output modulation spectra produced by the
trained noise-shaping modulators of ordersn = 1, 2
for a sinusoidal inputu(t) with amplitude0.5 and pe-
riod 128 are shown in Figure 2. The different orders of
noise shaping are apparent from the noise spectrum at
lower frequencies.

We have tried to generate third-order noise-shaping
with the same state space encoding (4) forn = 3, but
failed to get stable and consistent results. We attribute
this to the coarse encoding, and note that satisfactory
results have been obtained forn = 3 using a neural
classifier with continuous distributed representation,
trained through a perturbative version of reinforcement
learning [7].

10
-3

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

Normalized Frequency (units 1/T)

A
m

pl
it

ud
e

 n = 1

 n = 2

Fig. 2. Simulated output modulation spectra of the trained noise-
shaping modulators of ordersn = 1, 2 for a sinusoidal input with
amplitude0.5 and period128.

4. Analog VLSI Implementation

4.1. System Level Architecture

We have integrated a cascade of 6 integrators, an 11-bit
address state encoder, and an address-encoded clas-
sifier with 64 reinforcement learning neurons on a
2.2 mm× 2.2 mm chip in 2µm CMOS technology. A
floorplan and a micrograph of the VLSI chip are shown
in Figures 3 and 4. Although of limited use as presently
implemented for demonstration purposes, this chip is
to our knowledge the first analog VLSI implementation
of delayed reinforcement learning embedded in a real-
time application. The first analog VLSI implemen-
tation of reinforcement learning was reported in [8].
Reinforcement learning in a digital VLSI framework is
described in [9], and “instinct-rule” learning in an ana-
log neural classifier for robot navigation is presented
in [10].

The bank of cascaded integratorsxi(t) is imple-
mented using fully differential switched-capacitor cir-
cuits. The state encoderχ contains a bank of compara-
tors and logic to encode the state of the input signal
and integration variablesu(t) andxi(t), assigning one
sign bit and one amplitude bit to each variable, ex-
cept no amplitude bits forx5(t) andx6(t). Each sign
bit encodes polarity as in (4). Each amplitude bit en-
codes a threshold on the absolute signal level, a feature
which we did not use in the experiments reported here.
Selected bits from the state encodingχ are used to ad-

Reinforcement Learning∆Σ Modulator 293

u(t)y(t)

x1(t)

x2(t)

x6(t)

+–
M

O
D

U
LA

T
O

R

r(t)

O
V

E
R

LO
A

D
 D

E
T

E
C

T
O

R

T
H

R
E

S
H

O
LD

IN
G

A
D

D
R

E
S

S
 E

N
C

O
D

E
R

χ(t)

y(t)
REINFORCEMENT LEARNING

BINARY CLASSIFIER

3

3

X ADDRESS DECODER

Y
 A

D
D

R
E

S
S

 D
E

C
O

D
E

R

q(t)

Fig. 3. Floorplan of the noise-shaping modulator with nonlinear
classifier and integrated reinforcement learning.

Fig. 4. Micrograph of the 2.2× 2.25 sq. mm chip in 2µm CMOS
technology.

dress the input space of the classifier, shown on top of
the floorplan in Figure 3.

The classifier implements a network of 64 neurons
with locally tuned input response, as defined above.
For convenience of implementation, the neuron cells
are arranged in an8 × 8 2-D array as in a RAM, ac-
tivated through 3 vertical and 3 horizontal address bit

lines. The (negative) reinforcement learning signal is
obtained from an overload detector which signals satu-
ration of one or more integrator stages in the modulator.

The remainder of this section focuses on the design
of the reinforcement learning classifier. The other cir-
cuits are fairly standard and their details are beyond the
scope of this paper.

4.2. Hysteretic Reinforcement Learning

For a more compact and robust implementation of the
reinforcement learning classifier cell, the reinforce-
ment learning algorithms (5)-(7) updating cell param-
etersyk andqk are modified as follows:

yk(t+ 1) = hyst (yk(t)− α sgn(yk(t)) UPDk(t))
qk(t+ 1) = qk(t)− β UPDk(t) (9)

where the auxiliary variableUPDk(t) is constructed
as

UPDk(t) = −r̂(t) ek(t) > 0
= 0 otherwise (10)

which is active “one” only when the cell is so unlucky
to be eligible during a punishment. The expression
hyst(·) in (9) denotes (optional) hysteresis in the dy-
namics ofyk: hyst(y) ≡ ywheny retains the same po-
larity as the previous value ofy, andhyst(y) ≡ sgn(y)
when the polarity ofy has flipped from its previous
value. In other words, it takes several “punishments”
before the cell changes its polarity ofyk, but once it
does, the value ofyk moves all the way to the other
side. The reason for including this hysteresis in the up-
dates ofyk is to avoid oscillations around zero that may
arise under repeated punishment which is inevitable in
the initial stages of learning, and to reduce the effect
of leakage in volatile storage during training. Finally,
the eligibility is constructed as

ek(t+ 1) = 1 k = χ(t)
= ek(t)− δ otherwise . (11)

The effect of the change in (11) with respect to (7) is
that a cell remains equally “eligible” over a fixed time
interval after it is selected, as opposed to an exponential
decay of eligibility over time through low-pass filter-
ing (7). This implies that all cells active over a given
time window prior to failure are equally punished, an
assumption which does not drastically affect learning
performance but simplifies implementation.

The reinforcement̂r(t) in (10) is presented to all cells
as a binary active-low (̂r(t) = −1) pulse-code modu-

294 Cauwenberghs

ek

r̂

SELhor

SELvert

Vδ

Vbp UPD

UPDVbn

qk
Vαp

Vbn

SELhor

qvert

Vbn

SELhor

yvert

UPDUPD

Vbp

Vbp
Vαp

Vαn
LOCKLOCK

yk

HYST

HYST

Fig. 5. Circuit diagram of neuron cell with embedded reinforcement learning.

lated signal, and is constructed based on (6). The binary
punishment signalr(t) is obtained from the overload
detector, and is active-low when any integratori ≤ n
saturates.

4.3. Reinforcement Learning Cell

Figure 5 shows the circuit schematic of the reinforce-
ment learning neuron cell, measuring100× 130 µm2

in 2µm CMOS technology. The eligibilityek is pulled
high when the cell is selected,i.e., bothSELhor and
SELvert are low. When deselected, the eligibility de-
cays thereafter at a constant rateδ determined by the
current set by bias voltageVδ. This implements the
modified eligibility equation (11). When̂r is low, and
at the same timeek exceeds a given threshold which de-
pends onVbp, the signalUPD goes low, and its comple-
ment UPD high. This in turn implements equation (10),
activating the cell to update its parameters.

When UPD is active in the cell, bothqk and yk
are updated. The learning updates are provided by
charge-pump circuitry free of switch injection noise,

described in [7]. The values of the learning update
constantsα andβ are set through global voltagesVαn
andVαp, biased in the subthreshold MOS region.qk
is always increased by an update as given by (5), and
decreases spontaneously only through the leakage cur-
rent from a reverse diode to ground, not shown in Fig-
ure 5. Conversely, the update inyk is bipolar, always
in the direction opposite toyk. When the control sig-
nal HYST is active, the update is hysteretic, by means
of positive capacitive feedback through two cascaded
pseudo-nMOS inverters in the lower left of Figure 5.
This implements the modified hysteretic update equa-
tion (9). When LOCK is active, the binary value ofyk
is latched, allowing static storage of theyk parameters
after learning.

5. Experimental Results

5.1. Array of Reinforcement Learning Cells

Measurements characterizing the time response of
the learning cells to external stimuli, in terms of the
constantsδ andα in the model (11) and (9), are repre-

Reinforcement Learning∆Σ Modulator 295

0 16 32 48 64

1

10

Address

E
lig

ib
ili

ty
 In

te
rv

al
 (

m
se

c)

0.5V

0.45V

 Vδ = 0.4V

Fig. 6. Time span of the eligibility interval across the array of
reinforcement learning cells, measured for different values ofδ as
set byVδ . A one-time address selection marks the start of the interval.

0 16 32 48 64
1

10

100

Address

U
pd

at
e

In
te

rv
al

 (c
yc

le
s)

 Vαn
 = 0.6 V

 Vαn
 = 0.5 V

0 → 1

0 → 1

 y
k
 = 1 → 0

 y
k
 = 1 → 0

Fig. 7. Number of update cycles between hysteretic alternation
in yk, across the array of reinforcement learning cells, measured for
different values ofα as set byVαn (andVαp). A single 20µsec
negative reinforcement pulse is applied once every update cycle.

sented in Figures 6 and 7, respectively. The eligibility
time interval, during whichek(t) > 0, triggered by
selection of addressk, is shown in Figure 6 for all 64
cells as a function of the bias settingVδ.

Characteristic measurements of the learning rateα
(or, equivalently, the update latency time) are given in
Figure 7, which shows the time intervals between con-
secutive toggles of the binaryyk parameter, during con-

Fig. 8. Oscillogram ofr̂(t) (top),qk(t) (center) andyk(t) (bot-
tom) waveforms under periodic impulsive reinforcement. See text
for explanation.

tinuously eligible negative reinforcement (UPDk(t) ≡
1), and with hysteresis enabled. Note the large asym-
metry in the update latency time in the ’0’ and ’1’ state
of yk, due to asymmetries in the circuit and its opera-
tion. This is easily alleviated in practice by settingVαp
at a larger current bias thanVαn, although this is not
important for learning to be successful.

Update latency for theqk parameters is qualitatively
identical to that for theyk parameters, except that by
construction the latency of the 1 to 0 transition is much
more pronounced, set only by diode leakage on the
capacitor nodeqk in Figure 5.

The relatively large variance of the measuredδ and
α parameters across cells can be attributed to transistor
current mismatch. This level of variance is typical of
minimum size MOS devices operated in subthreshold,
and its effect does not present a significant problem.

Figure 8 further illustrates the implemented rein-
forcement learning mechanisms. Shown are the re-
sponses ofy(t) andq(t) under periodic activation of
an impulse reinforced punishment (r̂(t) = −1) while
synchronously cycling the input addressχ(t) through
the 64 neuron cells in sequence, at a rate of 100µsec per
cell. As is evident from Figure 8, the credit assignment
mechanism of reinforcement learning identifies those
cellsk which are active during a time interval immedi-
ately preceding the punishment, and updates only these
parametersyk andqk under the external reinforcement.
When activated,yk steadily changes polarity, andqk
remains low, as expected.

296 Cauwenberghs

0 100 200 300 400 500
Time t (units T)

 y
00

 y
01

 y
10

 y
11

 y(t)

 r(t)

 x
1
(t)

 u(t)

Fig. 9. First-order modulator experiments: recorded dynamics of state variables and parameters during on-chip learning.

Clearly, in an embedded application, the sequence
of selected statesχ(t) is not fixed but adapts together
with the policyyk, and the parametersyk andqk settle
rather than oscillate as the learning converges (i.e., as a
more desirable policy is found and punishment occurs
less frequently). This is demonstrated below for the
purpose of noise-shaping modulation.

5.2. First-Order Noise Shaping Modulation

Test results on training the classifier on-chip to pro-
duce noise shaping modulation of ordern = 1 using the
first integrator are shown in Figures 9 and 10. With hys-
teresis enabled in (9), this fairly simple learning task
can be solved without the adaptive critic (q(t) ≡ 0),
and accordingly we set̂r(t) ≡ r(t). As in the simula-
tions above, the input sequenceu(t) during training is
uniformly random with half full-scale maximum am-
plitude (1 V pp), and the integrator variablesxi(t) as
well as the eligibilitiesek(t) are reset to zero after ev-
ery occurrence of failure,r(t) = −1. The dynamics of
the state variables and parameters recorded during one
learning session are given in Figure 9, showing conver-

gence after roughly150 input presentations. The time
step in the experiments wasT = 2.5 msec, limited
by the bandwidth of the instrumentation equipment in
the recording. The learned pattern ofyk conforms to
that forn = 1 in Table 1. Learning succeeded at vari-
ous values of the learning constantsδ andα, affecting
mainly the rate of convergence.

Figure 10 shows a record of the time interval between
failure in consecutive trials, for 5 different learning ses-
sions, each from random initial conditions of the pa-
rametersyk. As in [3], the displayed time intervals in
Figure 10 are numerically averaged over consecutive
trials. In most of the cases, convergence is reached
in less than 25 trials,i.e., with fewer than 25 param-
eter update cycles. At convergence, failures still per-
sist, although at a scale of several thousand time steps
T . The persistence of failures at convergence is due
to the volatile capacitive storage ofyk which causes
the correct values to decay and drift in absence of re-
inforcement, triggering failure each time one of the
componentsyk reverses polarity.

Reinforcement Learning∆Σ Modulator 297

0 10 20 30 40 50
10

0

10
1

10
2

10
3

10
4

Trial Number

T
im

e
St

ep
s

B
et

w
ee

n
Fa

ilu
re

Fig. 10. First-order modulator experiments: failure intervals
recorded for 5 learning sessions from random initial conditions.

0 500 1000 1500 2000
Time t (units T)

 y
000

 y
001

 y
010

 y
011

 y
100

 y
101

 y
110

 y
111

 r(t)

Fig. 11. Second-order modulator experiments: recorded dynam-
ics of the classifier parametersyk(t) and reinforcement signalr(t)
during on-chip learning.

5.3. Second-Order Noise Shaping Modulation

Results on training the classifier to stabilize two
stages of the integrator bank to produce noise-shaping
modulation of order two are represented in Figure 11.
Convergence is reached in about 1,400 cycles, which
is a factor three slower than in the casen = 1. Learn-
ing experiments over longer time intervals (107 cycles)
show that the mean time between failures is about 500
cycles. When the parametersyk are frozen after con-

10
-3

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

Normalized Frequency (units 1/T)

A
m

pl
it

ud
e

 n = 1

 n = 2

Fig. 12. Experimental output modulation spectra of the trained
noise-shaping modulators of ordersn = 1, 2 for a sinusoidal input
with amplitude0.8 V and period128.

vergence (by activating the LOCK switch in Figure 5),
the time between failures peaks at105 cycles, and varies
with the particular input sequenceu(t).

5.4. Harmonic Response of the Trained Modulators

To analyze the effect of the nonlinear classifier and
the reinforcement learning on the noise shaping, we
tested the trained modulators of ordersn = 1, 2 un-
der a sinusoidal input. Figure 12 shows the modula-
tion output spectra, obtained by fourier transforming
the binary sequences recorded from the chip under a
sinusoidal input of amplitude0.8 V and period128
samples. Full scale is1 V , and the sampling frequency
1/T is 400 Hz, limited by the instrumentation to ac-
quire the data points in the experimental setup. The
obtained spectra conform to the simulated spectra in
Figure 2, except for the higher noise floor visible at
lower frequencies.

The harmonic distortion in the second order modula-
tor, observed both in the simulatated and experimental
spectra, is typical for other second-order delta-sigma
modulators with large input amplitude (80 % full-scale
here). The distortion is due to nonlinear correlations
between the integrator outputx2 and the inputu over
time. This effect is illustrated in Figure 13, showing
a fragment of the recorded internal state variables of
the second-order modulator. As a consequence of the
simple binary structure of the classifier, with no more

298 Cauwenberghs

-1

0

1
 u

 (
V

)

-1

0

1

 x
1 (

V
)

-1

0

1

 x
2 (

V
)

400 450 500 550 600

-1

0

1

Time t (units T)

 y
 (

V
)

Fig. 13. Fragment of waveforms recorded from the second-order noise-shaping modulator after training, for a sinusoidal input with amplitude
0.8 V and period128.

information available than just the polarity of the input
and integrator state variables, the classifier makes non-
optimal decisions in certain situations, especially for
input and integrator values close to zero. It is clear that
in order to reduce nonlinear distortion, a better clas-
sifier is needed which accounts for finer-grain analog
amplitude information on the state variables, such as
in a neural network with continuous neurons and dif-
ferentiable sigmoids [7]. Further improvements can
be expected from incorporating decision feedback, in
which previous bit decisions are used in the classifier,
such as commonly used in binary inter-symbol inter-
ference equalizers for hard drive storage retrieval [11].

These and other improvements necessarily incur a
cost in implementation complexity. Besides algorith-
mic advances, their efficient implementation at this
early stage of development are open problems for con-
tinued research in this area. The premise, in the long
run, is adaptive higher-order noise-shaping modulation
for high-speed oversampled data conversion, continu-
ally adapted to the statistics of the input signal.

6. Conclusions

We reformulated noise-shaping modulation for over-
sampled A/D conversion as a nonlinear control prob-
lem with solutions that are stable for higher ordersn
using an optimization criterion directly on the values
of the integration variables. The linear thresholding
classifier commonly used in delta-sigma modulation is
replaced by a more general nonlinear classifier.

We applied reinforcement learning to train a non-
linear classifier which uses information only on the
polarities of the input and integration variables of the
modulator, achieving stable noise shaping of orders
n = 1 and2.

Finally, we implemented the adaptive modulator in-
cluding neural classifier and reinforcement learning on
a single analog VLSI chip, and presented experimental
results on training the system as first-order and second-
order noise-shaping modulators.

The remaining challenge is to increase the effective
order of noise shaping that can be obtained with an ex-
perimental system beyondn = 2, requiring a classifier
of more refined structure than we considered here. We
note that simulations support satisfactory results for

Reinforcement Learning∆Σ Modulator 299

ordern = 3 using a distributed continuous neural clas-
sifier, trained with a perturbative stochastic version of
reinforcement learning [7]. Further improvements, for
ordersn = 4 and beyond, require both more advanced
training or classification techniques such as variants
on heuristic dynamic programming using gradient es-
timation and prediction in the state space [6] or decision
feeback in the classifer [11], as well as careful design of
the modulator transfer functionsHi(z) in (2) as a com-
promise between quality and stability of noise shaping.
Besides their efficient implementation in VLSI, the de-
sign of such architectures remains an open issue.

Similar principles as the ones presented here for
noise-shaping modulation can be applied to problems
in communications and pattern recognition that call for
adaptive control, with less exacting stability require-
ments than a bank of integrators, for which a simple
VLSI approach as demonstrated here may be more than
appropriate. Examples can be found in adaptive non-
linear predictive speech coding, and decision-feedback
disk drive read inter-symbol interference equaliza-
tion [11].

References

1. J.C. Candy and G.C. Temes, “Oversampled Methods for A/D
and D/A Conversion,” inOversampled Delta-Sigma Data Con-
verters, IEEE Press, pp 1-29, 1992.

2. S. Grossberg, “A Neural Model of Attention, Reinforcement,
and Discrimination Learning,”International Review of Neuro-
biology,vol. 18, pp 263-327, 1975.

3. A.G. Barto, R.S. Sutton, and C.W. Anderson, “Neuronlike
Adaptive Elements That Can Solve Difficult Learning Control
Problems,”IEEE Transactions on Systems, Man, and Cyber-
netics,vol. 13 (5), pp 834-846, 1983.

4. R.S. Sutton, “Learning to Predict by the Methods of Temporal
Differences,”Machine Learning,vol. 3, pp 9-44, 1988.

5. C. Watkins and P. Dayan, “Q-Learning,”Machine Learning,
vol. 8, pp 279-292, 1992.

6. P.J. Werbos, “A Menu of Designs for Reinforcement Learning
Over Time,” in Neural Networks for Control,, W.T. Miller,
R.S. Sutton and P.J. Werbos, Eds., Cambridge, MA: MIT Press,
1990, pp 67-95.

7. G. Cauwenberghs, “Analog VLSI Stochastic Perturbative
Learning Architectures,”Analog Integrated Circuits and Sig-
nal Processing,vol. 13 (1/2), pp 195-209, 1997.

8. C. Schneider and H. Card, “Analog CMOS Synaptic Learning
Circuits Adapted from Invertebrate Biology,”IEEE T. Circ.
Syst., vol. 38 (12), pp 1430-1438, Dec. 1991.

9. T.G. Clarkson, C.K. Ng and Y. Guan, “The pRAM: An Adap-
tive VLSI Chip,” IEEE Trans. on Neural Networks,vol. 4 (3),
pp 408-412, 1993.

10. G. Jackson and A.F. Murray, “Competence Acquisition in
an Autonomous Mobile Robot using Hardware Neural Tech-
niques,” inAdv. Neural Information Processing Systems,Cam-
bridge, MA: MIT Press, vol.8, pp. 1031-1037, 1996.

11. B.C. Rothenberg, J.E.C. Brown, P.J. Hurst and S.H. Lewis,
“A Mixed-Signal RAM Decision-Feedback Equalizer for Disk
Drives,” IEEE J. Solid-State Circuits,vol. 32 (5), pp 713-721,
1997.

Gert Cauwenberghs received the engineer’s degree in ap-
plied physics from the University of Brussels, Belgium, in
1988, and the M.S. and Ph.D. degrees in electrical engineer-
ing from the California Institute of Technology in 1989 and
1994, respectively. In 1994, he joined Johns Hopkins Uni-
versity as an assistant professor in electrical and computer
engineering. His research covers analog and digital VLSI cir-
cuits, systems and algorithms for parallel signal processing
and adaptive neural computation. He received the National
Science Foundation Career Award in 1997.

