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Abstract—We present an analog VLSI chip intended to serve as
a front end of a speech recognition system. The chip architecture
is inspired by biological auditory models common to humans
and primate vertebrates. We include experimental results on a
1.2-���m CMOS custom analog VLSI implementation and speech
recognition results obtained from software simulations of the
hardware on the TI-DIGITS database.

Index Terms—Analog VLSI, neural networks, speech recogni-
tion.

I. INTRODUCTION

H UMAN performance in speech recognition tasks is su-
perior to that of the state-of-the-art speech recognition

systems. This is especially true under adverse conditions,
such as noisy environments or when speech is transmitted
through a telephone channel. It is hypothesized that the specific
characteristics of the human auditory periphery may play an
important role in the robustness of human speech perception.
A significant amount of research has been performed to gain an
understanding of basic signal processing steps in a mammalian
cochlea [1]–[4].

It has also been demonstrated that feature extraction based
on computational models of auditory processing leads to a
signal representation that is more robust for speech recognition
[5], [6]. However, because of their inherent complexity, appli-
cation of auditory models to real systems poses a significant
engineering challenge. For most applications, a system is
constrained to be real time, low power, and low cost. However,
as indicated by Jankowsksi [6], it takes 120 times the real time
to compute auditory features on a general purpose worksta-
tion. Therefore, we should find other methods of computing
auditory features.
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Since the seminal work of Lyon and Mead [7], several re-
search groups have implemented analog subthreshold circuits
and systems that emulate early auditory functions [8], [9],
[11]–[13]. An important benefit of using analog circuit tech-
niques for speech processing is very low power consumption
and real-time operation.

We have adopted this approach to develop analog VLSI
hardware for auditory-based feature extraction. The extracted
features are the signal energies and zero-crossing time intervals
obtained on the frequency-decomposed output channels in a
cochlear filter bank. The system presented in this paper is
intended as a demonstration vehicle toward a low-power real-
time robust speech recognizer for portable applications. The
paper is organized as follows. Section II briefly reviews the
human auditory periphery and its signal processing function.
Section III describes the implemented VLSI architecture and
reports on preliminary chip testing results. In the final section,
we describe the structure of a speech recognition system that
uses auditory features, and we report recognition results for a
digit recognition task.

II. A UDITORY SIGNAL PROCESSING

Sound waves that reach the eardrum are mechanically
transferred to the cochlea, which is a fluid-filled chamber parti-
tioned by the basilar membrane (BM), illustrated in Fig. 1. The
mechanical vibrations create standing waves in the cochlear
chamber that cause the BM to vibrate at frequencies corre-
sponding to the incident acoustic wave frequency. For each
frequency value, there exists a location along the BM where
the vibration is strongest. These locations roughly follow
logarithmic ordering in frequency along the BM. Hence, in
generic form, the BM can be modeled as a bank of frequency-
selective filters, shown in Fig. 2, where the center frequency of
each filter is equally spaced on a log scale, each representing
a particular location equally spaced along the membrane [1],
[17]. It has been shown that such filter-bank representation is
equivalent to a wavelet analysis [10], [19].

The mechanical vibration along the BM is sensed by the
inner hair cells (IHC’s) that constitute the axon roots of
the auditory nerve-fiber bundle. Each IHC is connected to
about ten nerve fibers that differ in the motion level of
the BM at which they fire. Beyond the auditory nerve, our
understanding of biological processing is almost primitive.
However, constituting the only signal input to the cortex, the
nerve-firing patterns must contain all the information relevant
for recognition. Therefore, an auditory-based feature extraction
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Fig. 1. A schematic diagram of the cochlea showing the main signal
processing components.

Fig. 2. BM can be modeled as a bank of filters, each with different center
frequency. The center frequencies of the filterbanks are uniformly distributed
on a logarithmic scale.

algorithm used for speech recognition must be capable of
capturing important specifics of the firing patterns, which are
hypothesized to be partly responsible for the robustness of
human auditory.

The discrete-action potentials generated by the IHC and
transmitted through nerve fibers to the cochlear nucleus in
response to an auditory stimulus can be considered as zero-
crossing events of the BM velocity [15]. This is especially true
at medium sound-pressure levels, such as in a typical office en-
vironment. It has been shown analytically that the encoding of
complex signals, such as natural speech, by the zero-crossing
rates of its wavelet transform (in this case, performed by the
BM filter bank) provides a robust representation. In particular,
the formant phase locking—the property that the hair cells
tend to fire in phase with the dominant frequencies of the
input signal—is believed to introduce spectral enhancement
and noise robustness [16]–[19]. Moreover, zero-crossing rates
detected in spectral subbands are ideal for the fast detection
of spectral changes [20].

Fig. 3 defines the term zero-crossing interval or thein-
stantaneouszero-crossing rate. The depicted waveform is the
output of a single BM filter that corresponds to some particular
location along the BM. We define as the time interval
between two consecutive upward zero crossings in the ac
component of the signal. In order to account for different
fibers firing at different motion levels of the same output,
we also compute anenergymeasure, which we define as the

Fig. 3. Information coding by zero-crossing intervals and period energy.

Fig. 4. Block diagram of the VLSI architecture for the electronic cochlea.

integral over the rectified ac component of the signal, within
the period .1 The zero-crossing interval and the signal
energy for the corresponding interval of the wavelet transform
constitute a complete signal representation [21]. Also, since the
accuracy in computing depends critically on the accuracy
of only a few components, it is easier to carefully design
a reliable circuit cell for performing this computation [22].
Therefore, due to its physiological plausibility and power-
ful signal processing capabilities, we adopt a zero-crossing-
based signal representation for abstracting the auditory nerve
response.

III. VLSI C HIP ARCHITECTURE AND CIRCUITS

The implemented hardware system emulating the auditory
periphery includes both a model of frequency decomposition in
the BM of the inner cochlea and a model of feature extraction
in the inner hair cells of the cochlea.

Fig. 4 shows a block diagram of the auditory signal pro-
cessing chip. Following the architecture proposed by Liu,
we implement the BM as a filter-bank structure (as shown
in Fig. 2), each segment of which consists of a linear first-
order low-pass filter, followed by two linear bandpass filter
sections [9]. The filter bank is tuned to frequencies spaced
uniformly on a logarithmic scale, from 100 to 8000 Hz [9],
[12], [13]. This range corresponds to the spectrum covered by
speech sounds. The BM is implemented as a 15-segment filter-
bank structure, each segment of which consists of multiple
linear first-order sections followed by two linear bandpass filter

1The definition of an “energy” feature is short of rigorous physical meaning.
It should be interpreted as a measure of signal strength or signal “power.”
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Fig. 5. Zero-crossing interval and energy feature computation block (TZC

and Energy).

Fig. 6. Autoadaptive comparator for detecting zero crossing.

sections [9]. The filters are based on linearized transconductors
developed by Furth [23]. For maximum power efficiency, their
MOS devices are biased in below-threshold operation [24],
[27]. The frequency-decomposed time signals from the BM
are then processed locally to obtain a representation for the
auditory-nerve firings. We employ a binary charge pump to
establish an adaptive elimination of signal offsets. We use
the same comparator, that provides the control signal to the
binary charge pump, to detect the upward zero crossing and
to provides control signals for circuit computing [22].
The energy feature is obtained from integrating the full-wave
rectified and threshold-adjusted signal on a capacitor.

The outputs of the BM are input to a feature computation
block ( and Energy), as also indicated in Fig. 5. The
details of these circuits are described next.

A. Autoadaptive Comparator

The frequency-decomposed time signals from the BM are
processed locally. We employ a binary charge pump [25]
to eliminate signal offsets and cancel noise from the
comparator reference. The comparator, shown in Fig. 6, de-
tects zero crossing and provides a control signal for circuitry
computing the zero-crossing interval. The charge pump (,

) controls the offset voltage stored on the capacitor through
feedback. A change in offset in the BM signal will lead to a
change in charge pump duty cycle and effectively charge or
discharge the capacitor to follow the offset. The complemen-

tary mirror structure on the left controls the adaptation speed
and provides robust bias voltages for transistors and .

B. S/H and Feature Computation

The approach followed for time-interval computation is
similar to that of Kumar [26]. The circuit, shown in Fig. 7,
performs a time-interval-to-voltage conversion at every zero-
crossing event. Capacitor is charged with a constant current
( ) and reset at the end of every period. Just prior to resetting

, the follower on the very right is powered up and transmits
the voltage on to .

The S/H and reset procedure described above requires
two short, subsequent, nonoverlapping voltage pulses to be
generated by the two-stage circuitry on the left. A stage
consists of aNOR gate and an inverter. A falling signal edge
from the comparator causes theNOR output to become high for
a very short time, dependent on howfastthe inverter toggles its
state. This slew rate can be controlled externally by .
The first stage generates the sample pulse, the second stage
resets capacitor .

This technique of S/H is different from the conventional
scheme, where the follower is always powered up and a
charge-compensated switch is used to S/H. The follower in
this scheme is active only for the duration of the S/H pulse.
Hence, a proper value for , that results in pulse
durations of nanoseconds range, considerably decreases power
consumption of the follower. Also, due to faster transition
times, the short-circuit current in the digital sections is smaller,
further reducing the power consumption by more than an order
of magnitude. In this respect, the circuit is an improvement
over the circuit described in [26]. To address the problem
of charge injection, the follower is turned off slowly. The
value of the capacitor and externally controlled voltage

set the rate at which the follower is turned off. The
fabricated circuit has been tested and found functional for
signal frequencies up to 8 MHz.

Apart from the comparator, the computed offset, andS/H
andResetpulses, are also used for obtaining the signal energy
by integrating the full-wave rectification of the threshold-
adjusted BM output signal using a capacitor. We employ
two transconductors to perform voltage rectification [27]. The
energy feature is sampled and held the same way as the
frequency feature.

The circuits just described are contained in the block in-
dicated by and Energy in Fig. 4 and interconnected as
shown in Fig. 5.

C. Arbitration and Asynchronous Data Interface

The feature outputs from every channel are time-division
multiplexed to the chip output, using anasynchronousprotocol
which is most efficient when dealing with communication
problems involving a bandwidth-limited bus, and when bus
requests are at arbitrary time and rate. The idea is similar to
that used by Lazzaroet al. [28]. At every zero-crossing instant,
the channel requests service by setting a set/reset (SR) latch
(Fig. 4). The arbitration logic handles multiple requests at a
time and favors the highest frequency channel. It initiates the
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Fig. 7. Sample-and-hold (S/H) circuit and interval feature computation.

address encoder, which passes the winning channel address to
a D-flip-flop (D-FF) that stores the channel address currently
being serviced. The address is applied to the multiplexer,
which steers the channel feature to the data output pins. Once
the data has been acquired, an external reset pulse is expected.
It is multiplexed back to reset the SR latch of the channel
just being completed. The arbitration logic and the encoder
generate a new address, which is held by the D-FF and applied
to the multiplexer for the next acquisition. We verified this data
acquisition scheme by performing software simulations for a
speech signal. We found that a data acquisition bandwidth of
30 K samples per second is sufficient to collect all crossing
events [29].

Apart from these features, the BM output can also be
monitored externally through the multiplexing circuit and is
used for tuning the basilar membrane filterbank model.

IV. CHIP TEST RESULTS

We have fabricated and tested a 15-channel (2 mm2
mm in 1.2- m BiCMOS technology) prototype chip, shown in
Fig. 8. We report here some of the experimental results from
the chip. Fig. 9 demonstrates the time-interval feature compu-
tation. The lower trace is the basilar membrane output signal
of the highest frequency channel in response to a triangular
FM-modulated input signal in the audio range. The bandpass
properties of the basilar membrane channel are evident from
the magnitude envelope of the output. As the input frequency
decreases, the output amplitude first increases, and then de-
creases, in correspondence to the bandpass properties of the
basilar membrane channel. The upper trace shows the resulting
time-interval feature voltage. As the frequency decreases, the
time interval between the zero crossings increases, and so does
the output voltage. Also note that, since is output every
period, this feature is output less frequently at low frequencies,
as is evident from the larger steps in time.

Fig. 8. Micrograph of the 2 mm� 2 mm feature extraction chip in 1.2-�m
BiCMOS technology fabricated through the MOSIS service.

The energy feature is also extracted every period of the
signal. If the period is held constant, then the amplitude modu-
lation of the signal will reflect in this feature. Fig. 10 illustrates
this operation. The basilar membrane is supplied with an AM-
modulated sinusoidal of constant frequency (uppermost trace).
The trace below is the corresponding basilar membrane output.
The lower two traces are the energy feature and the time-
interval feature, respectively. We observe that signal energy
changes, but, due to constant frequency, the time-interval
feature remains constant.

Fig. 11 depicts the address-bus activity for four periods
of a sinusoidal input signal. To obtain this trace, the reset
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Fig. 9. Interval feature for FM- modulated input.

Fig. 10. Energy and interval feature for AM-modulated input.

pulse is externally applied at a clock rate of 50 kHz. Traces
1–4 correspond to interface address lines (LSB)– for
15 cochlea channels. Address zero encodes that none of
the channels have requests to be serviced. Consistently, we
observe that crossing events tend to be clustered around zero
phase of the input signal, the zero crossing.

V. SPEECH RECOGNITION ARCHITECTURE AND RESULTS

The analog VLSI chip outlined in the previous section
emulates theknown aspects of auditory signal processing.
However, beyond the physiological level of neural firing
patterns, the mechanisms in higher cortical processing stages
are not well understood. Practical system implementations for
speech recognition require a compact signal representation that
is described by a small number of parameters and contains
only (and all) the information relevant to speech recognition.
We represent the signal properties by constructing an interval
histogram (IH). We generate an IH by creating several bins
corresponding to different ranges of values of . For any
zero-crossing event, we choose the bin that corresponds to
the value of for that event and fill it with nonlinearly
compressed energy for the corresponding event. The IH is

Fig. 11. Address-bus activity during four periods of sinusoidal input.

Fig. 12. System architecture for the use of silicon cochlea as a preprocessor
to a speech recognition system.

computed from the last 20 crossing events in every channel
and does not exceed a time span of at most 40-ms length and
is produced at a rate of 100 Hz. As an alternative, we may also
use pitch-triggered IH generation, that is, zero-crossing events
in the lowest frequency channel trigger an IH to be produced.

When auditory signal representations are interfaced to
recognition systems, the so-calledrepresentation-recognizer
gap [11] becomes apparent. There is a significant difference
between the conventional linear predictive coding (LPC)
or Cepstrum features [14] and the auditory features. The
conventional representations are generally uncorrelated and
of low dimension, as opposed to auditory features that are
highly correlated and of higher dimensions. To resolve this
discrepancy, we use linear discriminant analysis (LDA) that
also reduces feature dimensionality, thus enabling a more
robust estimation of fewer parameters [30].

Fig. 12 depicts the recognition system architecture. The
analog VLSI chip serves as the front end. The acquisition
system collects zero-crossing intervals and the corresponding
energy measure from all channels. Subsequently, a software
module computes interval histograms, which are passed
to the recognizer. We apply LDA to reduce the feature
dimension and then use hidden Markov models (HMM)
to perform digit recognition.

In our software simulations, we replaced the analog VLSI
chip and the acquisition system by an equivalent software
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module. We performed digit recognition experiments on the
isolated digits part of the TI-DIGITS database. We modeled
each digit by a seven-state single-mixture left-to-right HMM.
We obtained a recognition accuracy of 99.47% on the TI-
DIGITS database, which is obtained when a feature window
size corresponding to the last 20 crossings is used. These
results should be treated as preliminary when compared to
the state-of-the-art systems [31]. We believe that the perfor-
mance can be further improved by using better models and
optimizing the IH-generation method. However, the recognizer
performance certainly demonstrates the applicability of analog
VLSI cochlea to auditory-based research. Other researchers
have used features similar to the one reported here and found
them robust in presence of noise degradation [32], and we
expect to see similar robustness from the low-power real-time
VLSI system.

Implementing a complete recognizer on a chip or chipset
necessitates the implementation of a dimensionality reduction
step (matrix vector multiplications) and a statistical decoder
on a chip. The sophistication required by algorithms in state-
of-the-art speech recognition decoders makes this not a trivial
task and, certainly, a challenge.

The question of why the zero-crossing representation is
more robust to noise is an interesting one [4]–[6], [18]. We
have compared the standard fast Fourier transform and the IH
histogram as applied to an input sine wave corrupted by white
noise [29]. This comparison shows that the nonlinearity of
the IH histogram leads to noise suppression around the signal
frequency peak in the spectrum. The nonlinearity originates in
the correlation of zero-crossing intervals across channels.

VI. CONCLUSION

We have demonstrated an approach to real-time auditory-
based signal analysis using analog VLSI as a front-end feature
extractor. A chip that computes zero-crossing intervals and
signal energies in frequency subbands was designed and
successfully tested. Furthermore, we reported on recognition
results on the TI-DIGITS spoken-digit database obtained from
software simulation of the chip-based feature-extraction algo-
rithm. In view of the fact that the recognition model is very
simple, and the feature extraction process was not explicitly
optimized with respect to various parameters, we consider
these results very encouraging.
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