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Abstract— Spike sorting of neural data from single electrode
recordings is a hard problem in machine learning that relies
on significant input by human experts. We approach the task
of learning to detect and classify spike waveforms in additive
noise using two stages of large margin kernel classification
and probability regression. Controlled numerical experiments
using spike and noise data extracted from neural recordings
indicate significant improvements in detection and classification
accuracy over amplitude- and linear template-based spike sorting
techniques.

I. INTRODUCTION

Recording electrical activity from neurons in the brain has
become an indispensable technique in modern neuroscience
research. Typically, these recordings are obtained by advancing
a metal probe through neural tissue until a neuron of interest
is located. It is difficult to position an electrode in such a
way as to isolate a single neuron, so the activity recorded is
frequently derived from multiple neural sources. Unless the
contribution of each source can be separated from the others
(and from background noise), the integrity of the experiment
may be compromised. A number of efforts (reviewed in [1],
[2]) have been directed at this problem of neural source
separation — commonly called “spike sorting” — but none
has been completely effective in all situations. In fact, although
new approaches look promising [3]-[6], some of the simplest
measures have been most successful [7].

Spike sorting systems rely on the fact that the waveforms
(“spikes”) recorded from a specific neuron are functions of
both the intrinsic electrochemical dynamics of that neuron
and the position of the electrode with respect to the neuron.
Furthermore, they assume that in a noiseless system, each
recorded spike from a given neuron over a short period of
time would be nearly identical, although spikes from dif-
ferent neurons could vary in shape. In reality, though, the
system has many sources of noise — slight perturbations
in electrode position, activity of distant cells, environmental
factors, etc. — and consequently every recorded spike appears
different. Moreover, because the spectral contents of spikes
and noise are similar, many recorded spikes appear similar
to noise, and vice-versa. The ability to distinguish spikes
from noise (“spike detection”), and to distinguish spikes from
different sources (“spike classification”), therefore depends on
both the disparities between the noise-free spikes from each

source (“templates”) and the signal-to-noise level (SNR) in
the recording system. An additional factor that we will not
consider as a variable in this paper (but see [3], [8]) is the
overall activity level of the neurons, which affects the number
of coincident (“overlapping”) spikes.

In the following sections we describe a novel spike sorting
architecture based on GiniSVM support vector machine clas-
sification and probability regression [9]. The spike sorter is
evaluated with numerical experiments on spike and noise data
extracted from neural recordings over a large range of signal-
to-noise ratios and template disparities, and demonstrates su-
perior performance to standard template matching techniques.

II. METHODS

A. Experimental Methods

Electrophysiology recordings were made in male and female
rhesus monkeys (Macaca mulatta), each weighing 4-5 kg, dur-
ing a sensory neurophysiology experiment. On each recording
day, single and multiple units were isolated in cortical areas
1 and 3b using quartz-coated platinum/tungsten (90/10) elec-
trodes (diameter, 80 mm; tip diameter, 4 mm; and impedance,
15 MΩ at 1000 Hz). The raw data were filtered and amplified
before being digitized (National Instruments PCI-6052) at a
40 KHz sampling rate and stored. All surgical procedures were
done under sterile conditions and in accordance with the rules
and regulations of the Johns Hopkins Animal Care and Use
Committee and the Society for Neuroscience.

During off-line analysis of each recording session, pure
noise segments and segments containing putative spikes were
automatically identified and manually verified [10], [11].
Putative spike waveforms were time-aligned and clustered
in a principal component space under human supervision;
templates were formed by averaging all points sufficiently
close together. Out of 81 recording sessions, 25 were found
to contain two or more templates.

B. Data Generation

A persistent issue in the spike sorting literature is whether
to use real or simulated data to test new algorithms. While
using real data would be preferable in some ways, real
data is fundamentally unlabeled, so it necessitates testing
the algorithm using possibly-incorrect labels supplied by a
human expert. Therefore, simulated data is used in many
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Fig. 1. (a) The four sets of experimentally-recorded templates used in the
generative model for all data in this paper. (b) Typical simulated recordings
at SNR = 1 (top), SNR = 2 (middle), and SNR = 3 (bottom). Spike locations
are labeled with the neuron class.

spike-sorting publications (e.g. [3], [4], [8], [12]). The lack
of standards and publicly-available databases with labeled
spikes complicate comparisons between different methods in
the published literature. We have created a generative model
to simulate a neural recording based on parameters measured
from actual recordings, and will gladly provide our simulated
data upon request.

1) Spikes and Noise: We simulate a neural recording by
inserting real spike templates into a background process of
stationary colored Gaussian noise. The background noise pro-
cess can be completely described by its standard deviation and
noise autocorrelation vector. To increase the accuracy of the
model, we estimate both of these parameters from pure noise
segments of real neural recordings (see Section II-A) and then
simulate the noise using an autoregressive filter [13]. Spline-

interpolated spike templates (with random phase) are inserted
according to a modified Poisson process where the number of
spikes in a fixed time period is given by the usual Poisson
probability distribution, but the inter-spike interval is not a
true exponential random variable because of the refractory
period of the neurons. For all of the experiments described
below, each simulated recording uses a randomly selected set
of noise parameters taken from a real recording session. In
order to draw fair comparisons across multiple signal-to-noise
ratios, we have selected four representative sets of templates,
shown in Figure 1a.

After selecting a set of noise statistics and templates for a
simulation, we also specify the signal-to-noise ratio (SNR).
Although there are many ways of calculating this value, we
define it as the root mean squared value of the template divided
by the standard deviation of the simulated noise, i.e. SNR =
‖template‖ / σ ·

√

|template| where ‖ · ‖ is the L2 norm, σ
is the standard deviation of the simulated noise, and | · | is the
length in number of samples.

C. Detection and Classification

The spike sorting system consists of two stages — detection
and classification — each trained using a support vector ma-
chine (SVM) classifier. The first stage discriminates between
noise and the occurrence of a spike over time, and the second
stage discriminates between spike templates.

GiniSV M [14], a sparse large-margin kernel machine
for logistic probability regression, is used to estimate class
output probabilities. The class probabilities yield confidence
values for the classified spike outputs, and are used in
expectation-maximization based training of partially-labeled
data. The quadratic form of entropy in the dual formulation
of GiniSV M offers sparsity in the kernel representation,
and corresponds to a Huber loss function in the primal
formulation [9]. Class probabilities in the binary case take
the form

P (1|x) =
1

1 + e−(wΦ(x)+b)
=

1

1 + e−(
∑

i
yiαik(x,xi)+b)

(1)

and P (−1|x) = 1 − P (1|x), where x is the vector to be
classified, xi are training vectors, yi = ±1 are the corre-
sponding class labels, and k(·, ·) defines the kernel. Binary
GiniSVM minimizes the following objective function in the
dual coefficients αi:

min
α

:
1

2

∑

i,j

αi(Qij +
8γ

Ci

δij)αj − 4γ
∑

i

αi (2)

subject to
∑

i

yiαi = 0 and 0 ≤ αi ≤ Ci,∀i

where Qij = yiyjk(xi,xj) is the kernel matrix evaluated
at training vectors i and j, γ defines the margin, Ci are
(data-dependent) regularization constants, and δij = 1 for
i = j and zero otherwise. GiniSV M offers the additional
computational advantage that it is compatible with standard
quadratic programming techniques for SVM training.



For comparison purposes, we also perform spike detection
by simple amplitude thresholding and spike classification
using a standard template matching technique [2]. For template
matching, we average all spikes observed from a given neuron
in the SVM training set and use the mean waveforms as the
templates. Decisions are based on the Euclidian, Mahalanobis,
or PCA distances between an input vector and the spike tem-
plates, i.e. an input vector is assigned the label of whichever
template is closest.

D. Performance Measures

To test the performance of the detection stage, we analyze
10 seconds of simulated stationary neural recordings captured
immediately after the initial two seconds used for training the
system. A sliding window of 1.25 msec duration is moved
across the data and each epoch is evaluated by the SVM.
The resulting output is a sequence of probabilities of the
given epochs being “spikes” versus “noise”. The performance
metric sets a threshold at five times the standard deviation of
this signal and calculates merit as the ratio of the difference
between hits and false positives to the total number of spikes,
where a “hit” is assessed whenever the mean time between
successive SVM output threshold crossings occurs within
±0.2 msec of an actual spike time, and a “false positive” is
assessed for all mean threshold crossing times outside this
range.

To test classification performance, we evaluate the fraction
of correctly classified spikes in the second stage, assuming
correct detection in the first stage. Since the exact spike times
are known for the simulated data, we extract 1.25 msec of data
beginning from each spike onset and use these as the input to
the SVM and template matching algorithms.

III. RESULTS

1) Detection Stage: For the detection stage, training data
is generated from the first two seconds of a simulated neural
recording, where each training vector consists of 1.25 msec
(50 samples at a 40 KHz sampling rate). Training data include
centered spikes as “spike” vectors, surround of spikes as
“noise” vectors, and pure noise; 500 examples from each
class are used, for a total of 1,500 training vectors. Results
from the detection stage are shown in Figure 2a, which plots
“merit” (see Section II-D) against signal-to-noise ratio (SNR).
Each point on these lines represents the average performance
on ten seconds of simulated data, where averages are taken
across all four sets of templates (Figure 1a). For a SNR = 2,
the SVM detection stage provides better than 80% accuracy
compared to less than 60% for amplitude thresholding, and
by SNR = 3 it has reached its asymptotic performance level
of about 95%. In comparison, thresholding does not reach
an equivalent level until a SNR = 5. The middle axis of
Figure 1b shows a recording with SNR = 2 — at this level,
the decisions are not obvious to the untrained eye, but the
SVM is very effective. For a SNR between zero and one,
both basic amplitude thresholding and SVM detector perform
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Fig. 2. Performance as a function of SNR for (a) detection stage and (b)
classification stage. The “90% PCA” curve illustrates the results if template
distance is calculated in a lower-dimensional space where dimensions are
chosen to account for approximately 90% of the variance of the data, as
given by standard principal component analysis techniques.

poorly, with a greater number of false positives than correctly
classified spike epochs.

2) Classification Stage: The results of the classification
stage, trained over the initial five seconds of data and assuming
perfect detection, are summarized in Figure 2b. The SVM
classifier consistently outperforms template matching over the
entire range of SNRs tested, although it only exceeds the
Euclidean distance metric by a slight margin. Both techniques
appear to reach an asymptotic success rate of about 95%.
This seems reasonable, as no precautions are taken to avoid
simulating overlapping spikes, and destructive interference
is likely to render decision making impossible occasionally.
Figure 1b provides an example of some typical test data, and
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Fig. 3. Sample data from a SNR = 2 dataset determined by the SVM to be (a)
class 1 and (b) class 2. Out of the 40 spikes shown here, 3 are misclassified.

Figure 3 illustrates some of the decisions made by the classifier
on a SNR = 2 dataset.

IV. CONCLUSION

We have demonstrated the success of a novel approach
to neural spike sorting using support vector machines. For
our simulated data, the SVM classifiers outperform standard
methods in both the detection and classification stages. Future
work will focus on using an EM-based transductive form of
SVM training to deal with nonstationary and partially-labeled
data.
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