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We present a multichip, mixed-signal VLSI system for spike-based vi-
sion processing. The system consists of an 80 × 60 pixel neuromorphic
retina and a 4800 neuron silicon cortex with 4,194,304 synapses. Its func-
tionality is illustrated with experimental data on multiple components
of an attention-based hierarchical model of cortical object recognition,
including feature coding, salience detection, and foveation. This model
exploits arbitrary and reconfigurable connectivity between cells in the
multichip architecture, achieved by asynchronously routing neural spike
events within and between chips according to a memory-based look-up
table. Synaptic parameters, including conductance and reversal potential,
are also stored in memory and are used to dynamically configure synapse
circuits within the silicon neurons.
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1 Introduction

The brain must process sensory information in real time in order to ana-
lyze its surroundings and prescribe appropriate actions. In contrast, most
simulations of neural functions to date have been executed in software pro-
grams that run much more slowly than real time. This places fundamental
limits on the kinds of studies that can be done, because most software
neural networks are unable to interact with their environment. However,
software models have the advantages of being flexible, reconfigurable, and
completely observable, and much has been learned about the brain through
the use of software. (See Dayan & Abbott, 2001.)

Neuromorphic hardware aims to emulate the functionality of the brain
using silicon analogs of biological neural elements (Mead, 1989). Typically,
unlike most software, hardware models can operate in real time (or even
faster than their biological counterparts), providing the opportunity to cre-
ate artificial nervous systems that can interact with their environment (Hori-
uchi & Koch, 1999; Indiveri, 1999; Simoni, Cymbalyuk, Sorensen, Calabrese,
& DeWeerth, 2001; Indiveri, Murer, & Kramer, 2001; Jung, Brauer, & Abbas,
2001; Cheely & Horiuchi, 2003; Lewis, Etienne-Cummings, Hartmann, Co-
hen, & Xu, 2003; Zaghloul & Boahen, 2004; Reichel, Leichti, Presser, & Liu,
2005). Unfortunately, silicon designs take a few months to be fabricated,
after which they are usually constrained by limited flexibility, so fixing a
bug or changing the system’s operation may require more time than that
required for an equivalent software model (although a mature hardware
design can be reused in many different systems; see, e.g., Zaghloul & Boa-
hen, 2004). Additionally, the models are not usually as detailed as software
models due to the limited computational primitives available from sili-
con transistors and the deliberate use of reductionist models to simplify
the hardware infrastructure by reducing the dimensionality of parameter
space.

Reconfigurable neuromorphic systems represent a compromise be-
tween fast, dedicated silicon hardware and slower but versatile software.
They are useful for studying real-time operation of high-level (e.g., cor-
tical), large-scale neural networks and prototyping neuromorphic sys-
tems prior to fabricating application-specific chips. Instead of hardwiring
connections between neurons, most reconfigurable neuromorphic sys-
tems use the address-event representation (AER) communication proto-
col (Sivilotti, 1991; Lazzaro, Wawrzynek, Mahowald, Sivilotti, & Gillespie,
1993; Mahowald, 1994). In an address-event system, connections between
neurons are emulated by time-multiplexing neural events (also called ac-
tion potentials, or spikes) onto a fast serial bus, and AER “synapses” are
implemented with encoders and decoders that monitor the bus and route
incoming and outgoing spikes to their appropriate neural targets. These
systems can be reconfigured by changing the routing functions, and mul-
tiple authors have demonstrated versions of AER that use memory-based
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projective field mappings toward this end (Deiss, Douglas, & Whatley,
1999; Higgins & Koch, 1999; Goldberg, Cauwenberghs, & Andreou, 2001;
Häfliger, 2001; Liu, Kramer, Indiveri, Delbrück, & Douglas, 2002; Indiveri,
Chicca, & Douglas, 2004; Ros, Ortigosa, Agis, Carrillo, & Arnold, 2006;
Vogelstein, Mallik, Vogelstein, & Cauwenberghs, 2007).

We have developed a reconfigurable multichip AER-based system for
emulating cortical spike processing of visual information. The system uses
one AER subnet to communicate spikes between an 80 × 60 pixel sili-
con retina (Culurciello, Etienne-Cummings, & Boahen, 2003; Culurciello
& Etienne-Cummings, 2004) and a 4800-neuron silicon cortex (Vogelstein,
Mallik, Cauwenberghs, Culurciello, & Etienne-Cummings, 2005), and a sec-
ond AER subnet to communicate spikes between cortical cells (see Figure 1).
Each cell in the silicon retina converts light intensity into spike frequency
(see section 2.2). Each cell in the silicon cortex implements an integrate-
and-fire neuron with conductance-like synapses (see section 2.1). Neural
connectivity patterns and synaptic parameters are stored in digital mem-
ory, allowing “virtual synapses” to be implemented by routing spikes to
one or more locations on the silicon cortex.

A number of multichip reconfigurable neuromorphic systems have been
described in the literature (Goldberg et al., 2001; Horiuchi & Hynna, 2001;
Taba & Boahen, 2003; Arthur & Boahen, 2004; Indiveri et al., 2004; Paz et al.,
2005; Riis & Häfliger, 2005; Serrano-Gotarredona et al., 2006; Zou, Bornat,
Tomas, Renaud, & Destexhe, 2006), but ours differs in some important ways.
First, the 4800-neuron silicon cortex is the largest general-purpose neuro-
morphic array presented to date. Second, unlike the other systems, our
silicon cortex has no local or hardwired connectivity, and each neuron im-
plements a synapse with programmable weight and equilibrium potential,
so all 4800 neurons can be utilized for any arbitrary connection topology,
limited only by the capacity of the digital memory (and bandwidth if real-
time operation is desired). Third, the hardware infrastructure supports up
to 1 million address events per second and allows real-time operation of
large networks. Finally, the silicon cortex can function as a standalone AER
transceiver, enabling the creation of even larger networks by connecting
multiple cortices together.

To explicate all of these features, we conducted a series of four exper-
iments within the common framework of a hierarchical model of visual
information processing (see Figure 2). Section 3.1 demonstrates the speed
and scale of the hardware by operating all 4800 cortical cells in real time.
Sections 3.2 and 3.4 highlight the versatility of the hardware by reconfig-
uring the cortex into both feedforward and feedback networks. Section 3.3
uses the neurons’ dynamically programmable synapses to multiplex a wide
range of synaptic connections onto individual cells. Finally, section 4 details
how the complete hierarchical model could be implemented in real time by
partitioning the network into functional units, each organized around one
silicon cortex.
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2 Hardware

Every neuron on the silicon retina and cortex is assigned a unique address
at design time, which is transmitted as an address event (AE) over an AER
bus when that neuron fires an action potential. All of the address-event
transactions in the multichip system illustrated in Figure 1 are processed by
a field programmable gate array (FPGA) located within the integrate-and-
fire array transceiver (IFAT) component (Vogelstein, Mallik, Vogelstein, &
Cauwenberghs, 2007). In addition to the FPGA, the IFAT contains 128 MB
of nonvolatile digital memory in a 4 MB × 32-bit array (RAM), the 4800-cell
silicon cortex, and an 8-bit digital-to-analog converter (DAC) required to
operate the silicon cortex (see section 2.1).

The path of an AE through the system is illustrated in Figure 1. In this ex-
ample, an outgoing presynaptic address from the silicon retina is placed on
the external AER bus and captured by the FPGA, which uses the neuron’s
address as an index into the RAM. Each of the 4,194,304 lines of RAM stores
information on a single synaptic connection, including its equilibrium po-
tential, its synaptic weight, and the destination (postsynaptic) address (see
Figure 3 and Deiss et al., 1999). This information is then used by the FPGA
to activate a particular cell in the silicon cortex. Divergent connectivity is
achieved by allowing the FPGA to access sequential lines in memory until
it retrieves a stop code, as well as by implementing reserved address words
that are used to activate multiple cells on one or more chips simultaneously.

Each application in section 3 requires a different number of synapses.
Full-field spatial feature extraction (see section 3.1) and salience detection
(see section 3.2) can be implemented with approximately 19,200 synapses
each. Spatial acuity modulation (see section 3.3) with a 16 × 16 fovea sur-
rounded by three concentric rings of geometrically decreasing resolution
uses 60,736 synapses. And computing the maximum of N neurons (see
section 3.4) relies upon N + N2 synapses (903 in the example shown here,
or 90,300 to compute the maximum of all local salience estimates for an
80 × 60-pixel visual field).

Figure 1: (a) Block diagram of the multichip system with silicon retina (OR)
and cortex (I&F). The silicon cortex is located within the IFAT subsystem, which
also contains a field programmable gate array (FPGA), digital memory (RAM)
for storing the synaptic connection matrix, and a digital-to-analog converter
(DAC) required to operate the I&F chips. The FPGA controls two AER buses:
one internal bus for events sent to and from the silicon cortex and one external
bus for events sent to and from external neuromorphic devices or a computer
(CPU). Circled numbers 1–6 highlight the path of incoming events from the OR
(see section 2.2). (b) Photograph of the system.
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Figure 2: Hierarchical model of visual information processing based on work
by Riesenhuber and Poggio (1999). Spatial features are extracted from reti-
nal images using a small set of oriented spatial filters, whose outputs are
combined to form estimates of local salience. The region with maximum
salience is selected by a winner-take-all network (WTA) and used to foveate the
image by spatial acuity modulation (SAM). A large set of simple cells with many
different preferred orientations is then used to process this bandwidth-limited
signal. The simple cells’ outputs are combined with a MAX function to form
spatially invariant complex cells, and the resulting data are combined in various
ways to form feature cells, composite cells, and, finally, “view-tuned cells” that
selectively respond to a particular view of an object.

2.1 Silicon Cortex. The silicon cortex used in this system is composed of
4800 random-access integrate-and-fire (I&F) neurons implemented on two
custom aVLSI chips, each of which contains 2400 cells (Vogelstein, Mallik,
& Cauwenberghs, 2004; Vogelstein, Mallik, Vogelstein, & Cauwenberghs,
2007). All 4800 neurons are identical; every one implements a conductance-
like model of a general-purpose synapse using a switched-capacitor archi-
tecture. The synapses have two internal parameters—the synaptic equilib-
rium potential and the synaptic weight—that can be set to different values
for each incoming event. Additionally, the range of synaptic weights can
be extended by two dynamically controlled external parameters: the prob-
ability of sending an event and the number of postsynaptic events sent
for every presynaptic event (Koch, 1999; Vogelstein, Mallik, Vogelstein, &
Cauwenberghs, 2007). By storing values for these parameters along with
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Figure 3: Example of IFAT RAM contents. Each line stores parameters for one
synaptic connection. The presynaptic neuron’s address is used as a base in-
dex (a) into the lookup table, while the FPGA increments an offset counter
(b) as it iterates through the list of postsynaptic targets (c). Synaptic weight
is represented as a product of the three values stored in columns d–f, which
represent the size of the postsynaptic response to an event, the number of
postsynaptic events to generate for each presynaptic event, and the probability
of generating an event, respectively (Koch, 1999; Vogelstein et al., 2007). The
synaptic equilibrium potential is stored in column g and is used to control the
DAC (see Figure 1). The reserved word shown at offset 0x01 is used to indicate
the end of the synapse list for presynaptic neuron 0x0000, so the data at offsets
0x02–0xFF is undefined.

the pre- and postsynaptic addresses in RAM (see Figure 3), the FPGA on the
IFAT can implement a different type of synapse for every virtual connection
between neurons. The maximum rate of event transmission from the silicon
cortex and its associated IFAT components is approximately 1,000,000 AE
per second and is primarily limited by the speed of the internal arbitration
circuits.

2.2 Silicon Retina. The silicon retina used in this system is called the
octopus retina (OR) because its design is based on the phototransduc-
tion mechanism found in the retinae of octopi (Culurciello, et al., 2003;
Culurciello & Etienne-Cummings, 2004). Functionally, the OR is an asyn-
chronous imager that translates light intensity levels into interspike interval
times at each pixel. However, unlike a biological octopus retina, in which
each photosensor’s output travels along a dedicated axon to its target(s),
all of the OR’s outputs are collected on its AER bus and transmitted serially
off-chip to the IFAT. Under uniform indoor lighting (0.1 mW/cm2), the OR
produces an average of 200,000 address events per second (41.7 effective
fps) while consuming 3.4 mW. However, most visual scenes do not have
uniform lighting, so the typical range of event rates for this application is
approximately 5,000 to 50,000 address events per second.
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3 Results: Spike Domain Image Processing

As described in section 1, we chose to exploit different aspects of the re-
configurable multichip system in a series of experiments organized around
the common framework of a hierarchical model of visual information pro-
cessing (see Figure 2). This model was selected to showcase the system’s
versatility because each processing stage places different requirements on
the fundamentally similar neurons within the silicon cortex, just as sensory
processing in the human cortex requires fundamentally similar pyramidal
cells in different locations to execute different functions (Kandel, Schwartz,
& Jessell, 2000).

In the model (see Figure 2), retinal outputs are first processed through
oriented spatial filters that highlight regions of high contrast (Mallik,
Vogelstein, Culurciello, Etienne-Cummings, & Cauwenberghs, 2005). This
information is then used by a salience detector network that focuses at-
tention on a region of interest and decreases the resolution in surrounding
areas to reduce the number of data being used for computations and trans-
mission (Vogelstein et al., 2005). Within the foveated center, data from the
local spatial filters are combined with a nonlinear pooling function to form
global spatial filters, which are subsequently combined to create feature
cells, composite cells, and view-tuned cells (Riesenhuber & Poggio, 1999).

Results from implementations of the first few stages of this network
computed entirely in the spike domain on our multichip system are de-
scribed below. Because this reconfigurable system is optimized not for any
particular application but for flexibility, these data are primarily intended
to illustrate the breadth of computations that can be performed and confirm
the general functionality of the proposed network architecture.

3.1 Spatial Feature Extraction. In the human visual cortex, the first stage
of processing is spatial feature extraction, performed by simple cells (Kandel
et al., 2000). Simple cells act as oriented spatial filters that detect local
changes in contrast, and their receptive fields and preferred orientations
are both functions of the input they receive from the retina. Spatial feature
extraction is used twice in the hierarchical model of visual information
processing in Figure 2—first coarsely over the entire visual field to estimate
salience and then more finely within a small region of interest.

Figure 4 illustrates how the silicon cortex can be used to perform spa-
tial feature extraction by emulating eight different simple cell types (see
Figures 4B1–I1) with overlapping receptive fields (Mallik et al., 2005). Note
that because the OR output is proportional to light intensity, these simple
cells respond to intensity gradients, not contrast gradients. In this example,
each cortical cell integrates inputs from four pixels in the OR, two of which
make excitatory synapses and two of which make inhibitory synapses. The
excitatory and inhibitory synaptic weights are balanced so that there is no
net response to uniform light.
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Figure 4: (B1–I1) Orientation-selective kernel compositions in the simple cell
network. Each simple cell has a 4 × 1 receptive field and receives two exci-
tatory (+) and two inhibitory (−) inputs from the silicon retina. (A2) Original
image captured by silicon retina. (B2–I2) Frames captured from real-time video
sequences of retinal images processed by simple cell networks implemented on
the silicon cortex. Each frame is composed from the output of 4800 simple cells
that were all configured in the orientation shown above (e.g., B2 shows output
from cells with receptive field drawn in B1) (Mallik et al., 2005).

Figures 4B2–I2 show a few sample frames from real-time video im-
ages generated by a simple cell network implemented on the silicon cortex
(Mallik et al., 2005). Because both the silicon cortex and the silicon retina
contain 4800 neurons, there is necessarily a trade-off between the spacing of
similarly oriented simple cells throughout the visual field and the number
of differently oriented simple cells with overlapping receptive fields. For
the images in Figure 4, this trade-off was resolved in favor of increased
resolution: each frame was captured from a different configuration of the
system wherein all 4800 simple cells had identical preferred orientations.
However, we have also generated similar results with lower resolution
when the cortex is configured to simultaneously process two or four differ-
ent orientations (data not shown). In addition to illustrating the principle of
spatial feature extraction, these data demonstrate that the multichip system
is capable of executing large-scale networks in real-time.

3.2 Salience Detection. Salient regions of an image are areas of high
information content. In the hierarchical model of visual information pro-
cessing, estimates of salience are used to select a region of interest that
will undergo further processing. There are many ways to compute salience;
one simple technique uses the magnitude of spatial derivatives of light
intensity within a given region as an approximate measure. A neural net-
work architecture for computing this metric is illustrated in Figure 5. In this
scheme, outputs from simple cells with overlapping receptive fields and
different preferred orientations are linearly pooled by second-level cells to
form estimates of local salience. A winner-take-all (WTA) circuit with one
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Figure 5: Pictorial representation of network for computing salience. Each local
salience detector cell (large black circle) integrates inputs from a neighborhood
of simple cells (small gray circles) with multiple different preferred orientations.
A large output from a salience detector cell indicates a strong change in spatial
image intensity, which frequently coincides with high information content.

input from each second-level cell could then be used to detect the region of
overall greatest salience (see section 3.4).

Data from the silicon cortex configured to compute salience are illus-
trated in Figure 6 (Vogelstein et al., 2005). Figure 6a shows a raw image
generated by the silicon retina (focused on a photograph) under normal
indoor lighting. This image is then processed by the coarse oriented spatial
filtering network described in section 3.1, with four sets of 1200 simple cells
simultaneously processing horizontal and vertical intensity changes (cell
types RF5–RF8 as designated by Figure 4; see Figure 6b for simple cell out-
put). To compute the local salience estimates (see Figure 6c), outputs from 64
simple cells of various orientations spanning an 8 × 8-pixel visual space are
pooled by a single second-level cell. Smooth transitions between adjacent
estimates are ensured by shifting each second-level cell’s receptive field by
four pixels in either the horizontal or vertical direction (see Figure 5).

Because the silicon cortex contains only 4800 neurons, the spatial filtering
and salience detection cannot both be implemented for the entire visual
field simultaneously. Therefore, to generate the images in Figure 6, each
stage of network processing was executed serially. This was achieved by
using a computer to log the output of the silicon cortex configured as
spatial filters, changing the cortical network to pool simple cell outputs, and
then playing back the sequence of events to the silicon cortex to compute
the local salience estimates. This strategy highlights the versatility of the
hardware; the same approach could also be used to perform a WTA or MAX
operation on the local salience estimates (see section 3.4). Moreover, this
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Figure 6: (a) Frame capture of image generated by silicon retina. (b) Output of
feature detectors (simple cells) using silicon retina data as input. (c) Output of
salience detectors using simple cell data as input (Vogelstein et al., 2005).
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technique faithfully simulates the operation of any hierarchical feedforward
network (feedback can be implemented within a given processing stage),
while allowing analysis of each stage’s output independently.

3.3 Spatial Acuity Modulation. In a human retina, there is a natural
distribution of photoreceptors throughout the visual field, with the high-
est density of light-sensitive elements in the center of vision and lower
numbers of photoreceptors in the periphery (Kandel et al., 2000). In combi-
nation with reflex circuits that guide the center of the eye to salient regions
in space, this configuration conserves computational resources and trans-
mission bandwidth between levels of the network. The same principles of
conservation are important in our multichip hardware system. However,
because the silicon retina used as the frontend to our visual system has
a fixed position and uniform resolution throughout its field of view, we
modulate the spatial acuity of the image in the address domain.

Spatial acuity modulation is performed by pooling the outputs from
neighboring pixels in the retina onto single cells in the silicon cortex, using
overlapping gaussian kernels with broad spatial bandwidths in the periph-
ery and narrow bandwidths in the center of the image (see Figure 7a).
Because synaptic weights in the IFAT can be dynamically configured us-
ing multiple degrees of freedom, these kernel functions can be reasonably
approximated using discrete changes to the internal weight variable, the
number of output events sent per input event, and the synaptic equilib-
rium potential. To relocate the center of vision (called the fovea) to an area
of interest in the visual field, the system could reprogram the RAM with
a different connectivity pattern, but instead, the FPGA performs simple
arithmetic manipulations to incoming address events, adding or subtract-
ing a fixed value from the row and column addresses to offset their posi-
tion (Vogelstein, Mallik, Culurciello, Etienne-Cummings, & Cauwenberghs,
2004).

Figure 7: (a) Pictorial representation of the spatial acuity modulation network
with fovea positioned over the center of the image. Circles represent cortical
cells, with the diameter of the circle proportional to the size of the spatial
receptive field. The outermost cortical cells integrate inputs from 64 retinal
cells, while the innermost cortical cells receive inputs from a single retinal
cell. One cell within each group is shaded to illustrate the pattern of synaptic
weights onto the cells in that group. Light shading represents a small synaptic
weight, and dark shading represents a large synaptic weight. (b) Example image
output from silicon retina with spatial acuity modulation performed by silicon
cortex. The nine subfigures show how the output varies as the center of vision
(fovea) moves from the top left corner of the image to the bottom right corner
(Vogelstein, Mallik, Culurciello, et al., 2004).
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An example image with nine different foveations is shown in Figure 7b.
With a 16 × 16-pixel fovea surrounded by k concentric rings of geomet-
rically decreasing resolution, the number of cortical neurons (M) required
to represent the foveated image from a N × N-pixel retina is given by
M = 162 + 2(k+2) − 4 � N2. This allows for a significant reduction (75% for
the example shown here) in the number of address events processed by
the hardware as well as a reduced communication cost of transmitting an
image “frame” (Vogelstein, Mallik, Culurciello, et al., 2004).

3.4 MAX Computation. The cortical process of object recognition is
modeled in Figure 2 with a series of linear and nonlinear poolings of simple
cell outputs (Riesenhuber & Poggio, 1999). In the first set of computations,
outputs from simple cells with similar preferred orientations and different
receptive fields are combined with a maximum operation to form complex
cells, which essentially act as position-invariant oriented spatial filters. Be-
cause of the large bandwidth required, the maximum is taken over only
a subset of the image with high salience. This is similar to the attention
spotlight model of human perception (Posner, Snyder, & Davidson, 1980;
Eriksen & St. James, 1986).

The maximum operation (MAX) is defined here as a nonlinear saturating
pooling function on a set of inputs whose output codes the magnitude of
the largest input, regardless of the number and levels of lesser inputs. A
neural implementation of the MAX is illustrated in Figure 8a, where a set
of input neurons {x} causes the output neuron z to generate spikes at a rate
proportional to the input with the fastest firing rate. The MAX operation is
closely related to the WTA function, except that a standard WTA network
allows one of many potential output neurons to be active, and that neuron’s
activity level is dependent on only the relative magnitude of the inputs, not
their absolute value. (For distractor input spike frequencies up to about 80%
of the maximum, the y neurons in the MAX network compute a WTA as
an intermediate step toward computing the maximum. Higher distractor
input spike frequencies can be accommodated by increasing the recipro-
cal inhibitory feedback between y neurons at the expense of the accuracy
of the z neuron.) When used in a neural network to pool responses from
different feature detectors, such as simple cells, a MAX neuron can simul-
taneously achieve high feature specificity and invariance (Riesenhuber &
Poggio, 1999).

We implemented a MAX network model originally proposed by Yu,
Giese, and Poggio (2002), shown in Figure 8a. The network is highly inter-
connected with all-to-all reciprocally inhibitory feedback connections be-
tween y neurons, confirming the ability of the silicon cortex to implement
recurrent networks. The invariance of the network to the number of in-
puts n is illustrated in Figure 8b. Thirty configurations, with n ∈ [1, 30],
were tested on the silicon cortex. In each configuration, the networks
were allowed to run for 60 seconds, with the x cells’ inputs generated by
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Figure 8: (a) Pictorial representation of MAX network. Excitatory connections
are shown by solid lines and triangular synapses. Inhibitory connections are
shown by dashed lines and circular synapses. Input to the x neurons is provided
by a computer that generates independent homogeneous Poisson processes.
Each y neuron makes inhibitory synapses with all other y neurons, but only
some connections are shown for clarity. The output of the z neuron is monitored
by a computer. (b) Invariance of the silicon cortex-based MAX network to the
number of inputs, n. (c) Invariance of the silicon cortex-based MAX network to
the firing rate of nonmaximum inputs.

independent homogeneous Poisson processes with parameter λ = 30 Hz
for nonmaximum inputs and λ = 50 Hz for xmax. As shown in Figure 8b,
the firing rate of the output neuron z is approximately the same for any
value of n. In addition to invariance toward the number of inputs n, the
MAX network is invariant to the firing rate of nonmaximum inputs. This
was tested by fixing n = 25 and allowing λ to vary for nonmaximum inputs
from 2 Hz to 50 Hz. The results are shown in Figure 8c, where the firing
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rate of the output neuron z is seen to be roughly constant for rates up to
40 Hz. Because the inputs to the network are stochastic, its performance
is weakened by very high firing rates of nonmaximal inputs or very large
numbers of nonmaximal inputs.

4 Discussion

The above experiments have demonstrated the operation of the primary
components of the hierarchical visual processing model (see Figure 2). A
full implementation would require larger numbers of neurons than can be
simultaneously accommodated in the present multichip system. However,
to construct the complete network, multiple IFATs could be connected to-
gether, one for each stage of processing, to form a very large silicon cortex.
In addition to providing more neurons, this arrangement would reduce the
constraints on bandwidth. For example, the spatial feature extraction archi-
tecture described requires each retinal cell to project to 64 simple cells at full
resolution. However, if the silicon retina produces 50,000 AE per second and
each IFAT is limited to processing 1,000,000 AE per second, the maximum
fan-out from each retinal cell to any individual IFAT is only 20. By dividing
the orientations among multiple IFATs (see Choi, Merolla, Arthur, Boahen,
& Shi, 2005), a fan-out of 64 could easily be sustained without overtaxing
the system. Furthermore, because the number of connections between neu-
rons within a given level is larger than the number of connections between
neurons in different levels (especially in recurrent networks like the MAX
network), giving each processing stage its own IFAT will conserve energy
by reducing the number of events transmitted across the external AER bus.

Connecting multiple IFATs together in a feedforward structure requires
little hardware beyond that shown in Figure 1. Because each IFAT functions
as an address event transceiver, sending and receiving events according to
a lookup table in RAM, it needs to know only the addresses of neurons in
the subsequent processing stage to communicate with them directly over its
AER output bus. For recurrent connections between IFATs, a central arbiter
would be required to merge incoming events from multiple AER buses and
route them to their appropriate targets. This can be achieved with simple
logic circuits implemented in a fast complex programmable logic device
(CPLD) or FPGA.

The same hardware that supports multiple IFATs could also support
multiple neuromorphic sensors. Because the silicon cortex implements a
general-purpose neural model, it is well suited for multimodal computa-
tions. Even without additional hardware, the system in Figure 1 can be
adapted for sensory modalities other than vision—any neuromorphic sen-
sor using AER can be attached to the port currently occupied by the OR.

Under normal operating conditions, such as when implementing the
networks described in section 3, each IFAT neuron executes approximately
1 million to 10 million operations per second (MOPS; addition, subtraction,
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multiplication, and comparison are all considered single operations). The
exact number of MOPS can be computed if the number of input and out-
put spikes are known, because each input event requires approximately six
basic operations per neuron, and every output event requires two or three
operations (Vogelstein, Mallik, Vogelstein, & Cauwenberghs, 2007). How-
ever, if the network architecture is optimized to take advantage of parallel
activation of multiple cells, the number of OPS increases significantly. For
example, if every incoming spike is routed to an entire row of neurons si-
multaneously, the IFAT would perform more than 360 operations per spike,
or at least 360 MOPS for 1,000,000 input spikes per second. In the current
hardware, the upper bound on operations per second is 19,200 MOPS if all
2400 neurons on one chip are activated simultaneously, or 38,400 MOPS if
all 4800 neurons in the silicon cortex are used in parallel. (These figures will
improve with technology and are not fundamental limits of our approach.)
To date, we have utilized only the parallel activation functions of the IFAT
to implement global “leakage” events, but one can easily imagine future
applications that take advantage of this feature, such as a fully connected
winner-take-all network (Abrahamsen, Häfliger, & Lande, 2004; Oster &
Liu, 2004).

5 Conclusion

We have described a novel multichip neuromorphic system capable of pro-
cessing visual images in real time. The system contains a silicon cortex with
4800 neurons that can be (re)configured into arbitrary network topologies
for processing any spike-based input. Results from the first few stages of
a hierarchical model for salience detection and object recognition confirm
the utility of the system for prototyping large-scale sensory information
processing networks. Future work will focus on increasing the number of
neurons in the silicon cortex, so that the entire hierarchical visual processing
model can be tested while it interacts with the environment.
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