
Sub-Microwatt Analog VLSI
Support Vector Machine for

Pattern Classification and Sequence Estimation

Shantanu Chakrabartty and Gert Cauwenberghs
Department of Electrical and Computer Engineering

Johns Hopkins University, Baltimore, MD 21218
{shantanu,gert}@jhu.edu

Abstract

An analog system-on-chip for kernel-based pattern classification and se-
quence estimation is presented. State transition probabilities conditioned
on input data are generated by an integrated support vector machine. Dot
product based kernels and support vector coefficients are implemented
in analog programmable floating gate translinear circuits, and probabil-
ities are propagated and normalized using sub-threshold current-mode
circuits. A 14-input, 24-state, and 720-support vector forward decod-
ing kernel machine is integrated on a 3mm×3mm chip in 0.5µm CMOS
technology. Experiments with the processor trained for speaker verifica-
tion and phoneme sequence estimation demonstrate real-time recognition
accuracy at par with floating-point software, at sub-microwatt power.

1 Introduction

The key to attaining autonomy in wireless sensory systems is to embed pattern recognition
intelligence directly at the sensor interface. Severe power constraints in wireless integrated
systems incur design optimization across device, circuit, architecture and system levels [1].
Although system-on-chip methodologies have been primarily digital, analog integrated sys-
tems are emerging as promising alternatives with higher energy efficiency and integration
density, exploiting the analog sensory interface and computational primitives inherent in
device physics [2]. Analog VLSI has been chosen, for instance, to implement Viterbi [3]
and HMM-based [4] sequence decoding in communications and speech processing.
Forward-Decoding Kernel Machines (FDKM) [5] provide an adaptive framework for gen-
eral maximum a posteriori (MAP) sequence decoding, that avoid the need for backward
recursion over the data in Viterbi and HMM-based sequence decoding [6]. At the core of
FDKM is a support vector machine (SVM) [7] for large-margin trainable pattern classifi-
cation, performing noise-robust regression of transition probabilities in forward sequence
estimation. The achievable limits of FDKM power-consumption are determined by the
number of support vectors (i.e., regression templates), which in turn are determined by
the complexity of the discrimination task and the signal-to-noise ratio of the sensor inter-
face [8].



xs

x

NORMALIZATION

λi1

s

14 24x24

30x2430x24

1
2

24

αj[n-1]
αi[n]

24

MVM MVM

SUPPORT VECTORS

INPUT

fi1(x)

24

FORWARD DECODING

Pi1 Pi24

K
E

R
N

E
L K

(x,x
s )

24x24

Figure 1: FDKM system architecture.

In this paper we describe an implementation of FDKM in silicon, for use in adaptive se-
quence detection and pattern recognition. The chip is fully configurable with parameters
directly downloadable onto an array of floating-gate CMOS computational memory cells.
By means of calibration and chip-in-loop training, the effect of mismatch and non-linearity
in the analog implementation is significantly reduced.
Section 2 reviews FDKM formulation and notations. Section 3 describes the schematic
details of hardware implementation of FDKM. Section 4 presents results from experiments
conducted with the fabricated chip and Section 5 concludes with future directions.

2 FDKM Sequence Decoding

FDKM recognition and sequence decoding are formulated in the framework of MAP (max-
imum a posteriori) estimation, combining Markovian dynamics with kernel machines.
The MAP forward decoder receives the sequence X[n] = {x[1], x[2], . . . ,x[n]} and pro-
duces an estimate of conditional probability measure of state variables q[n] over all classes
i ∈ 1, .., S, αi[n] = P (q[n] = i | X[n]). Unlike hidden Markov models, the states
directly encode the symbols, and the observations x modulate transition probabilities be-
tween states [6]. Estimates of the posterior probability αi[n] are obtained from estimates
of local transition probabilities using the forward-decoding procedure [6]

αi[n] =
S∑

j=1

Pij [n] αj [n − 1] (1)

where Pij [n] = P (q[n] = i | q[n − 1] = j,x[n]) denotes the probability of making a
transition from class j at time n − 1 to class i at time n, given the current observation
vector x[n]. Forward decoding (1) expresses first order Markovian sequential dependence
of state probabilities conditioned on the data.
The transition probabilities Pij [n] in (1) attached to each outgoing state j are obtained by
normalizing the SVM regression outputs fij(x):

Pij [n] = [fij(x[n]) − zj [n]]+ (2)



Vdd

M3

M1 M2

Vtunn

Vg ref

A

Vc

Vtunn

Vg
Vc

Iin

C B
Iout

M4

(a)

Vdd

M5 M6

M7

M8

M9

Vbias

x

M10

(x.xs)
2

λij
sK(x, xs)(b)

Figure 2: Schematic of the SVM stage. (a) Multiply accumulate cell and reference cell for
the MVM blocks in Figure 1. (b) Combined input, kernel and MVM modules.

where [.]+ = max(., 0). The normalization mechanism is subtractive rather than divisive,
with normalization offset factor zj [n] obtained using a reverse-waterfilling criterion with
respect to a probability margin γ [10],

∑

i

[fij(x[n]) − zj [n]]+ = γ. (3)

Besides improved robustness [8], the advantage of the subtractive normalization (3) is its
amenability to current mode implementation as opposed to logistic normalization [11]
which requires exponentiation of currents. The SVM outputs (margin variables) fij(x)
are given by:

fij(x) =
N∑

s

λs
ij K(x,xs) + bij (4)

where K(·, ·) denotes a symmetric positive-definite kernel1 satisfying the Mercer condi-
tion, such as a Gaussian radial basis function or a polynomial spline [7], and xs[m],m =
1, .., N denote the support vectors. The parameters λs

ij in (4) and the support vectors xs[m]
are determined by training on a labeled training set using a recursive FDKM procedure de-
scribed in [5].

3 Hardware Implementation

A second order polynomial kernel K(x,y) = (x.y)2 was chosen for convenience of im-
plementation. This inner-product based architecture directly maps onto an analog compu-
tational array, where storage and computation share common circuit elements. The FDKM

1K(x,y) = Φ(x).Φ(y). The map Φ(·) need not be computed explicitly, as it only appears in
inner-product form.



Vdd Vdd Vdd Vddfij[n]

γ

Vref
M1

M2

M4

M6

M5

M9

M7 M8
Aij

αj[n-1]

αi[n]

Pij[n]

M3

Figure 3: Schematic of the margin propagation block.

system architecture is shown in Figure 1. It consists of several SVM stages that generates
state transition probabilities Pij [n] modulated by input data x[n], and a forward decoding
block that performs maximum a posteriori (MAP) estimation of the state sequence αi[n].

3.1 SVM Stage

The SVM stage implements (4) to generate unnormalized probabilities. It consists of a ker-
nel stage computing kernels K(xs,x) between input vector x and stored support vectors
xs, and a coefficient stage linearly combining kernels using stored training parameters λs

ij .
Both kernel and coefficient blocks incorporate an analog matrix-vector multiplier (MVM)
with embedded storage of support vectors and coefficients. A single multiply-accumulate
cell, using floating-gate CMOS non-volative analog storage, is shown in Figure 2(a). The
floating gate node voltages (Vg) of transistors M2 are programmed using hot-electron in-
jection and tunneling [12]. The input stage comprising transistors M1, M3 and M4 forms
a key component in the design of the array and sets the voltage at node A as a function
of input current. By operating the array in weak-inversion, the output current through the
floating gate element M2 in terms of the input stage floating gate potential Vgref and mem-
ory element floating gate potential Vg is given by

Iout = Iine−κ(Vg−Vgref )/UT (5)

as a product of two pseudo-currents, leading to single quadrant multiplier. Two observa-
tions can be directly made regarding Eqn. (5):

1. The input stage eliminates the effect of the bulk on the output current, making it
a function of the reference floating gate voltage which can be easily programmed
for the entire row.

2. The weight is differential in the floating gate voltages Vg − Vgref , allowing to
increase or decrease the weight by hot electron injection only, without the need
for repeated high-voltage tunneling. For instance, the leakage current in unused
rows can be reduced significantly by programming the reference gate voltage to a
high value, leading to power savings.

The feedback transistor in the input stage M3 reduces the output impedance of node A
given by ro ≈ gd1/gm1gm2. This makes the array scalable as additional memory elements
can be added to the node without pulling the voltage down. An added benefit of keeping
the voltage at node A fixed is reduced variation in back gate parameter κ in the floating
gate elements. The current from each memory element is summed on a low impedance
node established by two diode connected transistors M7-M10. This partially compensates
for large Early voltage effects implicit in floating gate transistors.



(a) (b)

Figure 4: Single input-output response of the SVM stage illustrating the square transfer
function of the kernel block (log(Iout) vs. log(Iin)) where all the MVM elements are pro-
grammed for unity gain. (a) Before calibration showing mismatch between rows. (b)
After pre-distortion compensation of input and output coefficients.

The array of elements M2 with peripheral circuits as shown in Figure 2(a) thus implement a
simple single quadrant matrix-vector multiplication module. The single quadrant operation
is adequate for unsigned inputs, and hence unsigned support vectors. A simple squaring
circuit M7-M10 is used to implement the non-linear kernel as shown in figure 2(b). The
requirement on the type of non-linearity is not stringent and can be easily incorporated
into the kernel in SVM training procedure [5]. The coefficient block consists of the same
matrix-vector multiplier given in figure 2(a). For the general probability model given by (2)
a single quadrant multiplication is sufficient to model any distribution. This can be easily
verified by observing that the distribution (2) is invariant to uniform offset in the coefficients
λs

ij .

3.2 Forward Decoding Stage

The forward recursion decoding is implemented by a modified version of the sum-product
probability propagation circuit in [13], performing margin-based probability propagation
according to (1). In contrast to divisive normalization that relies on the translinear principle
using sub-threshold MOS or bipolar circuits in [13], the implementation of margin-based
subtractive normalization shown in figure 3 [10] is device operation independent. The
circuit consists of several normalization cells Aij along columns computing Pij = [fij −
z]+ using transistors M1-M4. Transistors M5-M9 form a feedback loop that compares and
stabilizes the circuit to the normalization criterion (3). The currents through transistors
M4 are auto-normalized to the previous state value αj [n − 1] to produce a new estimate
of αi[n1] based on recursion (1). The delay in equation (1) is implemented using a log-
domain filter and a fixed normalization current ensures that all output currents be properly
scaled to stabilize the continuous-time feedback loop.

4 Experimental Results

A 14-input, 24-state, and 24×30-support vector FDKM was integrated on a 3mm×3mm
FDKM chip, fabricated in a 0.5µm CMOS process, and fully tested. Figure 5(c) shows the
micrograph of the fabricated chip. Labeled training data pertaining to a certain task were
used to train an SVM, and the training coefficients thus obtained were programmed onto
the chip.



Table 1: FDKM Chip Summary

Technology Value
Area 3mm×3mm
Technology 0.5µ CMOS
Supply Voltage 4 V
System Parameters
Floating Cell Count 28814
Number of Support Vectors 720
Input Dimension 14
Number of States 24
Power Consumption 80nW - 840nW
Energy Efficiency 1.6pJ/MAC

q1
q2 q3 q4 q5 q6

q8 q9 q10 q11 q12 q13

q7x1

x2 x3 x4 x5 x6

x6

x5 x4 x3 x2 x1

(a)

(b) (c)

Figure 5: (a) Transition-based sequence detection in a 13-state Markov model. (b) Ex-
perimental recording of α7 = P (q7), detecting one of two recurring sequences in inputs
x1 → x6 (x1, x3 and x5 shown). (c) Micrograph of the FDKM chip

Programming of the trained coefficients was performed by programming respective cells
M2 along with the corresponding input stage M1, so as to establish the desired ratio of
currents. The values were established by continuing hot electron injection until the de-
sired current was attained. During hot electron injection, the control gate Vc was adjusted
to set the injection current to a constant level for stable injection. All cells in the kernel
and coefficient modules of the SVM stage are random accessible for read, write and cali-
brate operations. The calibration procedure compensates for mismatch between different
input/output paths by adapting the floating gate elements in the MVM cells. This is illus-
trated in Figure 4 where the measured square kernel transfer function is shown before and
after calibration.
The chip is fully reconfigurable and can perform different recognition tasks by program-
ming different training parameters, as demonstrated through three examples below. De-
pending on the number of active support vectors and the absolute level of currents (in
relation to decoding bandwidth), power dissipation is in the lower nanowatt to microwatt
range.



0 5 10 15 20 25
65

70

75

80

85

90

95

100

False Positive (%)

T
ru

e 
P

os
iti

ve
 (

%
)

Simulated
Measured

(a) (b)

Figure 6: (a) Measured and simulated ROC curve for the speaker verification experiment.
(b) Experimental phoneme recognition by FDKM chip. The state probability shown is for
consonant /t/ in words “torn,” “rat,” and “error.” Two peaks are located as expected from
the input sequence, shown on top.

For the first set of experiments, parameters corresponding to a simple Markov chain shown
in figure 5(a) were programmed onto the chip to differentiate between two given sequences
of input features: one a sweep of active input components in rising order (x1 through
x6), and the other in descending order (x6 through x1). The output of state q7 in the
Markov chain is shown in figure 5(b). It can be clearly observed that state q7 “fires” only
when a rising sequence of pulse trains arrives. The FDKM chip thereby demonstrates
probability propagation similar to that in the architecture of [4]. The main difference is that
the present architecture can be configured for detecting other, more complex sequences
through programming and training.
For the second set of experiments the FDKM chip was programmed to perform speaker ver-
ification using speech data from YOHO corpus. For training we chose 480 utterances cor-
responding to 10 separate speakers (101-110). For each of these utterances 12 mel-cepstra
coefficients were computed for every 25ms frames. These coefficients were clustered using
k-means clustering to obtain 50 clusters per speaker which were then used for training the
SVM. For testing 480 utterances for those speakers were chosen, and confidence scores
returned by the SVMs were integrated over all frames of an utterance to obtain a final
decision. Verification results obtained from the chip demonstrate 97% true acceptance at
1% false positive rate, identical to the performance obtained through floating point soft-
ware simulations as shown by the receiver operating characteristic shown in figure 6(a).
The total power consumption for this task is only 840nW, demonstrating its suitability for
autonomous sensor applications.
A third set of experiment aimed at detecting phone utterances in human speech. Mel-
cepstra coefficients of six phone utterances (/t/,/n/,/r/,/ow/,/ah/,/eh/) selected from
the TIMIT corpus were transformed using singular value decomposition and thresholding.
Even though the recognition was demonstrated for the reduced set of features, the chip op-
erates internally with analog inputs. Figure 6(b) illustrates correct detection of phonemes as
identified by the presence of phone /t/ at the expected time instances in the input sequence.

5 Discussion and Conclusion

We designed an FDKM based sequence recognition system on silicon and demonstrated
its performance on simple but general tasks. The chip is fully reconfigurable and differ-
ent sequence recognition engines can be programmed using parameters obtained through



SVM training. FDKM decoding is performed in real-time and is ideally suited for sequence
recognition and verification problems involving speech features. All analog processing in
the chip is performed by transistors operating in weak-inversion resulting in power dissipa-
tion in the nanowatt to microwatt range. Non-volatile storage of training parameters further
reduces standby power dissipation.
We also note that while low power dissipation is a virtue in many applications, increased
power can be traded for increased bandwidth. For instance, the presented circuits could be
adapted using heterojunction bipolar junction transistors in a SiGe process for ultra-high
speed MAP decoding applications in digital communication, using essentially the same
FDKM architecture as presented here.

Acknowledgement: This work is supported by a grant from The Catalyst Founda-
tion (http://www.catalyst-foundation.org), NSF IIS-0209289, ONR/DARPA N00014-00-C-
0315, and ONR N00014-99-1-0612. The chip was fabricated through the MOSIS service.

References

[1] Wang, A. and Chandrakasan, A.P, “Energy-Efficient DSPs for Wireless Sensor Net-
works,” IEEE Signal Proc. Mag., vol. 19 (4), pp. 68-78, July 2002.

[2] Vittoz, E.A., “Low-Power Design: Ways to Approach the Limits,” Dig. 41st IEEE
Int. Solid-State Circuits Conf. (ISSCC), San Francisco CA, 1994.

[3] Shakiba, M.S, Johns, D.A, and Martin, K.W, “BiCMOS Circuits for Analog Viterbi
Decoders,” IEEE Trans. Circuits and Systems II, vol. 45 (12), Dec. 1998.

[4] Lazzaro, J, Wawrzynek, J, and Lippmann, R.P, “A Micropower Analog Circuit Imple-
mentation of Hidden Markov Model State Decoding,” IEEE J. Solid-State Circuits,
vol. 32 (8), Aug. 1997.

[5] Chakrabartty, S. and Cauwenberghs, G. “Forward Decoding Kernel Machines: A
hybrid HMM/SVM Approach to Sequence Recognition,” IEEE Int. Conf. of Pattern
Recognition: SVM workshop. (ICPR’2002), Niagara Falls, 2002.

[6] Bourlard, H. and Morgan, N., Connectionist Speech Recognition: A Hybrid Ap-
proach, Kluwer Academic, 1994.

[7] Vapnik, V. The Nature of Statistical Learning Theory, New York: Springer-Verlag,
1995.

[8] Chakrabartty, S., and Cauwenberghs, G. “Power Dissipation Limits and Large Mar-
gin in Wireless Sensors,” Proc. IEEE Int. Symp. Circuits and Systems(ISCAS2003),
vol. 4, 25-28, May 2003.

[9] Bahl, L.R., Cocke J., Jelinek F. and Raviv J. “Optimal Decoding of Linear Codes for
Minimizing Symbol Error Rate,” IEEE Transactions on Inform. Theory, vol. IT-20,
pp. 284-287, 1974.

[10] Chakrabartty, S., and Cauwenberghs, G. “Margin Propagation and Forward Decoding
in Analog VLSI,” Proc. IEEE Int. Symp. Circuits and Systems(ISCAS2004), Vancou-
ver Canada, May 23-26, 2004.

[11] Jaakkola, T. and Haussler, D. “Probabilistic kernel regression models,” Proc. Seventh
Int. Workshop Artificial Intelligence and Statistics , 1999.

[12] C. Dorio,P. Hasler,B. Minch and C.A. Mead, “A Single-Transistor Silicon Synapse,”
IEEE Trans. Electron Devices, vol. 43 (11), Nov. 1996.

[13] H. Loeliger, F. Lustenberger, M. Helfenstein and F. Tarkoy, “Probability Propagation
and Decoding in Analog VLSI,” IEEE Proc. ISIT, 1998.


