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Abstract

Forward Decoding Kernel Machines (FDKM)
combine large-margin kernel classifiers with
Hidden Markov Models (HMM) for Maxi-
mum a Posteriori (MAP) adaptive sequence
estimation. This paper proposes a vari-
ant on FDKM training using Expectation-
Maximization (EM). Parameterization of the
expectation step controls the temporal extent
of the context used in correcting noisy and
missing labels in the training sequence. Ex-
periments with EM-FDKM on TIMIT phone
sequence data demonstrate upto 10% im-
provement in classification performance over
partitioned multi-class kernel logistic regres-
sion.

1 Introduction

Large Margin (LM) Classifiers like Support Vector Ma-
chines (SVM) have several attractive properties :

1. They generalize well even with relatively few data
points in the training set, and bounds on the gen-
eralization error can be directly estimated from
the training data.

2. The only parameter that needs to be chosen is a
penalty term for misclassification which acts as
a regularizer [4] and determines a trade-off be-
tween resolution and generalization performance,
to control learning ability.

3. The algorithm finds, under general conditions, a
unique separating decision surface that provides
the best out-of-sample performance.

4. They provide a framework to model non-linear
classification boundaries by projecting the input
data point into higher dimensional space and then
computing the distances with the aid of a kernel.

5. The learning algorithm performs model selection
based on some optimization criterion, by which on
the data points which are relevant to classification
or the problem are used for computation.

Most of the theory and formulation of LM classi-
fiers are based on a stronger independence assump-
tion across input training data. Sequential structure
across training data is not taken into account in the
standard LM formulation. Graphical Models factor se-
quential dependencies between random variables into
conditionally independent entities (cliques) to which
existing LM principles can be readily applied. For-
ward Decoding Kernel Machines (FDKM) [6] are hy-
brid models combining graphical models with LM prin-
ciples to perform MAP sequence estimation. State
transitions in the sequence are conditioned on observed
data using a kernel-based probability model, and for-
ward decoding of the state transition probabilities with
the sum-product algorithm directly produces the MAP
sequence. The parameters in the probabilistic model
are trained using a recursive scheme that maximizes
a lower bound on the regularized cross-entropy. The
recursion performs an expectation step on the outgo-
ing state of the transition probability model, using the
posterior probabilities produced by the previous max-
imization step. Similar to Expectation-Maximization
(EM), the FDKM recursion deals effectively with noisy
and partially labeled data.

The aim of this paper is to devise an FDKM training
algorithm based on Expectation-Maximization to en-
hance the generalization ability for static and temporal
recognition.

2 FDKM Decoder

The problem of FDKM recognition is formulated in
the framework of MAP (maximum a posteriori) esti-
mation, combining Markovian dynamics with kernel
machines. A Markovian model is assumed with sym-
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Figure 1: Graphical model showing inter-dependencies
between states g[n] conditioned on input vectors x[n].
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Figure 2: Trellis diagram for o fully connected 3
state Markovian model. The training label sequence
IM1},...,I[N] can be considered an instance of all pos-
sible paths through the trellis.

bols belonging to S classes, as illustrated by a graph-
ical model Figure 1. A corresponding trellis diagram
for a fully connected Markovian model is shown for
S = 3 classes. Transitions between the classes are
modulated in probability by observation (data) vec-
tors x over time.

The MAP forward decoder receives the sequence
X[n] = {x[n], x[n—1],...,x[1]} and produces an esti-
mate of the probability of the state variable g[n] over
all classes i, a;[n] = P(q[n] = i | X[n],w), where w
denotes the set of parameters for the learning machine.
Unlike hidden Markov models, the states directly en-
code the symbols, and the observations x modulate
transition probabilities between states [7]. Estimates
of the posterior probability a;[n] are obtained from
estimates of local transition probabilities using the
forward-decoding procedure [7, 8]

where P;;[n] = P(g[n] =i | g[n — 1] = j,x[n],w;) de-
notes the probability of making a transition from class
j at time n — 1 to class 7 at time n, given the cur-
rent observation vector x[n]. The transition probabil-
ities P;;[n] are parameterized by w; = {w;,..., Ws;},
where w = Uf] w;;. The forward decoding (1) embeds
sequential dependence of the data wherein the prob-
ability estimate at time instant n depends on all the
previous data. An on-line estimate of the symbol ¢[n]
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Figure 3: Graphical model assumed for EM training
showing inter-dependencies between states g[n], input
vectors x[n] and labels I[n].

is thus obtained:
¢! [n] = argmaxai[n] (2)
k3

Accurate estimation of transition probabilities P;;[n]
in (1) is crucial in decoding (2) to provide good per-
formance. We use kernel logistic regression [6] with
regularized maximum cross-entropy, to model condi-
tional probabilities.

3 Training Formulation

3.1 Direct Partitioning

A brute-force method to obtain transition probabilities
P;;[n] would be to partition the data into S subsets,
based on the classification of their previous state/label
and then performing S independent kernel logistic re-
gressions. This method has the following drawbacks.

1. Data Insufficiency: For data sets with large
number of classes/labels it may not be possible
to obtain instances of all tuples of previous states
and present states. This would produce inaccu-
rate and biased estimates for missing empirical
transitions.

2. Noisy and Missing Labels: FErrors in previ-
ous labels propagate to the training of the sub-
sequent labels. Missing labels cause information
about subsequent labels to be discarded in train-
ing.

3. Irregularity in Parameterization: The reg-
ularization parameters for each of the kernel lo-
gistic regressions have to be tuned separately to
prevent over-fitting or under-fitting to a part of
the training data. In most of the scenarios, prior
knowledge is not available to fine tune the param-
eters.



3.2 EM Sequential Training

The training algorithm described in this section mit-
igates the above problems. For the rest of the sec-
tion a fully connected trellis is considered, without
loss of generality for brevity of exposition. For train-
ing the MAP forward decoder, we assume access to
a training sequence with labels (class memberships).
For instance, the TIMIT speech database comes la-
beled with phonemes. Let I = {I[1],1[2],...,I[N]},
be a sequence of class memberships, where I[n] €
1,2,..,S. Continuous (soft) labels could be assigned
rather than binary indicator labels, to signify uncer-
tainty in the training data over the classes. As prob-
abilities y;[n] = P(I [n] = i), label assignments are
normalized: Ez—O yi[n] = 1,y;[n] > 0. This label se-
quence I can be considered to be one probabilistic re-
alization of of all possible paths through the trellis 2.

The objective of the training is to maximize the MAP
conditional likelihood of the training label sequence
given training data.

L(w) = log P(w) + log PI| X, w) (3)
where P(w) denotes the prior distribution over the
model parameters w. The state variables Q =
q[0], .., g[IN] serve as ‘hidden’ variables in the EM for-
mulation (3). Ideally, the hidden variables and labels
coincide, g[n] = I[n], and the procedure reduces to
the direct partitioning method of section 3.1. In the
presence of missing and noisy labels I[n], the EM pro-
cedure fills in previous states g[n — 1], with expected
values conditioned over the training sequence.

The EM auxiliary function (3) becomes

Q(w,wP) = logP( ) (4)

- ZP @, IX, w?) log P(Q, T[X, w)

where w? is the prior estimate of w, and Z is a nor-
malization constant to ensure Y P(Q|L, X, w?) =1
[5]. Using (4) a sequence of parameters is obtained
through the iteration wPt! = arg max,, Q(w,wP), re-
sulting in increase of likelihood function L(w) after
each iteration, till the algorithm converges to a local

maxima [5].

The factorization of the joint probabili-
ties P(Q,I|X, wP) over graphs can be performed using
standard forward-backward recursion [1, 14]. In this
work a regularization parameter p is introduced in the
forward-backward recursion controlling the temporal
extent of pooling context information to fill in missing

or noisy labels I[n] in the hidden sequence g[n].

The forward-backward recursions are

yiln] = Z’Yj[n—1](131[n]j[”])”13ij["]

Biln] = Zﬂ,[m (Prngs[n))* Piiln] - (5)
with

vln] = PUN,.... I[n], qln] =)

Biln] = P(I[n+1],...,1[N]lgln—1] =1) (6)

where P denotes the probability estimates obtained
using parameters w?.

In the limit g — 0 the forward recursion reduces to
the standard form (1). By increasing the value of u
the estimates of g[n] are biased more strongly towards
the training labels I[n]. Details of this effect can be
inferred through derivations in Appendix B.

A second regularization parameter C controls the
complexity of the kernel classifier as in the stan-
dard SVM formulation. A Gaussian prior P(w) =
exp(—55 37 ZJS |w;;|?) is chosen to favor ‘smooth’
solutions. Q(w,w?) can then be written as

Z H; (7)

Q(w,wP)

where
5. N s
H=Y _5|w,-,-|2+z Cyln) > Gijln) log Py[n] (8)
with
s
Jiln] = oinl/ Y oiln]
s
Ciln] = CY oilnl/ D> ~IN] 9)
i J
and
oi5ln] = vl —1](Pria);[n]) Py [n]ﬁi[n+1](1+u51[€],,-;
10
where 0, , is the delta Kronecker function. Mathe-

matical details to arrive at (8) are given in appendix
B. The formulation (7) is equivalent to S independent
regressions of conditional probabilities P;;[n], for each
outgoing state j, from data x[n] with effective labels
¥ij[n] and effective regularization factor C;[n].

3.3 Kernel Logistic Probability Regression

General estimation of conditional probabilities Pr(i|x)
from training data x[n] and (soft) labels y;[n] can be



obtained using a regularized form of kernel logistic re-
gression [9]. For each outgoing state j, one such prob-
abilistic model can be constructed for the incoming
state ¢ conditional on x[n):

S
Pijn] = exp(fi;(x[n]))/ > exp(fo;(x[n]))  (11)

As with SVMs, dot products in the expression for
fij(x) in (11) convert into kernel expansions over the
training data x[m] by transforming the data to feature
space [10]

fij (%)

Wz'j.X + bij

= Z A7} X[m].x + bij (12)
20 Z/\f; K (x[m],x) + b;

where K (-,-) denotes any symmetric positive-definite
kernel! that satisfies the Mercer condition, such as
a Gaussian radial basis function or a polynomial
spline [4, 11].

Optimization of (8) requires solving M disjoint but
similar sub-optimization problems. The subscript j
is omitted in the remainder of this section for clarity.
The (primal) objective function of kernel logistic re-
gression expresses regularized cross-entropy (8) of the
logistic model (11) in the form [11, 12]

1
H = —Z§|Wi|2 (13)

+ Olm] Y13 wilm] fiu(acfm]) — log ]

The parameters AJ} in (12) are determined by minimiz-
ing a dual formulation of the objective function (13)
obtained through the Legendre transformation, which
for logistic regression takes the form of an entropy-
based potential function in the parameters [9]

M 1 N N
He o= 305200 QAT (14)
i Nl m N -
+ Cm] ;(yi[m] - %) log(yi[m] — m)]

subject to constraints
A =0 (15)
AP =0 (16)
A < Clmlyi[m] (17)

'K (x,y) = ®(x).®(y). The map ®(-) need not be com-
puted explicitly, as it only appears in inner-product form.

Derivations to arrive at the dual formulation are pro-
vided in the Appendix A. And alternative approach us-
ing Huber loss function gives rise to a sparse dual for-
mulation where the Shannon entropy in equation (14)
converts to the Gini entropy index [16].

3.4 Training Algorithm
The EM training algorithm is summarized as follows :

1. To obtain an initial estimate of parameters w?,

regress probabilities using kernel logistic regres-
sion over the entire data set. This will give esti-
mates of P(g[n] = i|x[n]).

2. Bootstrap FDKM with estimates ]3,-j [n] =
P(q[n] = i|x[n]) and pick (derive) appropriate val-
ues for C' and p.

3. Compute y;;[n] and C;[n] using (5), (9) and (10).

4. Train S independent logistic kernel machines by
maximizing equation (8) using its dual formula-
tion (14), to obtain new set of parameters wP*1,

5. Compute new estimates of P;;[n] using wP*! and
go to step 3. Iterate till convergence.

Generally only 4-5 EM iterations are required to obtain
a reasonable solution. Approximation and projection
techniques used for FDKM in [16] can be used in the
EM procedure to improve the computational efficiency
of step 4.

4 Experiments and Results

To validate the training algorithm, experiments were
first performed in a controlled setting with training
data generated synthetically from a given distribution,
possessing a known sequential structure. Performance
was finally evaluated on real data, consisting of phone
sequences from TIMIT corpus.

4.1 Controlled Experiments

Training data was produced by a two state Hidden
Markov Model (HMM), with different single mixture
Gaussian distribution attached to the states. The
transition probabilities between the states determined
the sequential nature of the data. The dimension of
the input data was fixed to be 2 for the purpose of vi-
sualization. A sample output of 100 training points is
shown in Figure 4. The purpose of this experiment was
to determine if the machine is able to use the sequen-
tial information efficiently to yield better classification
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Figure 4: Plot showing the spatial structure and tem-
poral structure of the synthetic training (top) and test
data (bottom). The temporal plot (right) shows that
the data exhibits sequential structure.

performance, especially when there is significant over-
lap in the two class distributions. For a Bayes classi-
fication error of 21%, FDKM achieved a classification
error of 15.5% for a particular combination of u and
C, implying that it is able to leverage some of the se-
quential information present in the training data.

4.2 Phonetic Experiments

The performance of the training algorithm was evalu-
ated on phonetic data, obtained from TIMIT database.
The TIMIT speech dataset [13] consists of approxi-
mately 60 phone classes, which were first collapsed
onto 6 broad categories according to TIMIT docu-
mentation. These categories comprised of Vowels (V),
Stops(S), Fricatives(F), Nasals(N), Semi-Vowels(SV)
and Silence(Sil). An empirical phonetic language
model for 6 broad categories is illustrated in Table 1.
The table shows that there exists significant sequential
structure across these classes, that can be used to im-
prove the classification performance. The experiments
in this section is based on 2000 phonetic instances from
randomly chosen ”sx” training sentences in the corpus.

The speech signal was first processed by a pre-
emphasis filter with transfer function 1—0.9721. Sub-
sequently, a 25 ms Hamming window was applied over
10 ms shifts to extract a sequence of phonetic seg-
ments. Cepstral coefficients were extracted from the
sequence, combined with their first and second order
time differences into a 39-dimensional vector. Cep-
stral mean subtraction and speaker normalization were
subsequently applied. Each phone utterance was then
subdivided into three segments with relative propor-

Table 1: Phonetic Language Model Computed using
2000 phones instances from TIMIT. The phones pre-
vious state and the first row is the destination state.

L [ VIS [F | NJSV] Sl |
V | 4% | 04% | 8:5% | 61% | 6:3% | 11.6%
S | 5% | 0% | 0% | 03% | 1.8% | 05%
F | 8% | 05% | 0.5% | 08% | 1.0% | 3.4%
N | 4% | 05% | 14% | 01% | 04% | 2.2%
SV [ 10% | 0% | 0.5% | 0.2% | 0.1% | 1.3%
Sil | 7% | 6% | 32% | 0.7% | 1.8% | 1.5%
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Figure 5: Image of the kernel matrixz showing the ez-
tent of static information in the training data. There
are 6 distinct classes, and the grayscale factor depicts
the similarity between distinct classes in the feature
space.

tions 4:3:4 [15]. The features in the three segments
were individually averaged and concatenated to obtain
a 117-dimensional feature vector. Principal Compo-
nent Analysis (PCA) was performed and feature vec-
tors were projected onto 80-dimensional space, retain-
ing 99% of the total signal energy.

A second order polynomial kernel K(x,y) = [1 +
(x.y)?] was chosen for this experiment. Figure 5 de-
picts the gray scale plot of the kernel matrix. Several
distinct regions can be identified from the plot, indicat-
ing that the classes belonging to these distinct region
can be easily discriminated based on static informa-
tion.

Table 2 summarizes the performance of EM-FDKM
and compares its performance to FDKM approach
where the transition probabilities are computed using



Table 2: Confusion matriz evaluated on TIMIT test
set for u = 0.6 Top: EM-FDKM. Bottom: Static Lo-
gistic Regression

[Class| V.| S | F | N [ sv] sil |
\% 3% | 2% 1% 10% | 12% 2%
S 6% | 90% | 0% 1% 2% 2%
F 2% 3% | 94% | 0% 0% 1%
N 8% | 0% | 0% |84 % | 6% 2%
SV 22% 3% 1% 12% | 61% 0%
Sil 1% 1% 3% 1% 1% 94%
A% 62% 2% 3.5% | 14% | 25% 2%
S 1% 81% | 13% 1% 1% 3%
F 3.0% | 6.5% | 89% 0% 0% 1.5%
N 10% | 2% 3% 8% | 6% 1%
SV 24% | 3% 2% 4% | 60% 7%
Sil 5.5% 6% 3% 1% 2% | 82.5%

paritioning method.

5 Conclusion

FDKM merges large-margin classification techniques
into an HMM framework for robust forward decoding
MAP sequence estimation. FDKM improves decoding
and generalization performance for data with embed-
ded sequential structure, providing an elegant tradeoff
between learning temporal versus spatial dependen-
cies. Experiments with TIMIT and other sequential
data demonstrated the ability of EM training to reduce
or mask the effect of noisy or missing labels y;[n].
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Appendix A: Dual Formulation of
Kernel Logistic Regression

The regularized log-likelihood /cross entropy for kernel
logistic regression is given by [11, 12]

> sl (19)

k

— O] Y13 weln] el 1og2efp<x"”.
n k

First order conditions with respect to parameters wy,
and by, in fi(x) = wg.x + by, yield

H =

N I(x[n])
€
= CY -
e I - el SN efp(xn) X"
N f(x[n])
e
0 = Cnd ———]. (19
. - el M efr(xnl) )
Denote
o e fu(x(n]) %
k — [n][yk[n] - 224 efp(x[n])] ( )

in the first-order conditions (19) to arrive at the kernel
expansion (12) with linear constraint

frx) = Z/\ZK(x[n],x)+bk (21)

> OAp. (22)

Note also that >, A} = 0.

Legendre transformation of the primal objective func-
tion (18) in wy and by leads to a dual formulation
directly in terms of the coefficients A} [9]. Define
2n = log(zﬁ/l efr(xI)) and Qi; = K(x;,%x;). Then
(20) and (21) transform to

Z QN —log[yk[n] — A\g/Cn]] + bx — 2, = 0 (23)
1

which correspond to first-order conditions of the con-
vex dual functional

M 1 N N
2[5 Z Z AeQuXy (24)

+ C[n]z yrln] — [ ])1 og(yln] — Cin ])]
under constraints
=0 (25)
zn:,\g =0 (26)
k Ap < Clnlyk(n] (27)

where by, and z,, serve as Lagrange parameters for the
equality constraints (25) and (26).

Appendix B: Derivation of EM-FDKM
Forward-Backward recursions

We derive the factorization of EM auxiliary func-
tion (4) in terms of forward-backward variables (6).
For convenience of notation, the normalization con-
stant Z and prior P(w) are omitted and we expand

)1og P(Q, I|X, w) (28)

I(w,wP)

ZPQTK

The conditioned variables X,w and w?” are as-
sumed implicitly were omitted. The joint probability
P(Q,I|X,w) can be factored as

Pyyqo (1P (I[1]]g[1], g[0])...  (29)
Pynygv—1)[N]P(I[N]|g[N], ., q[0])

where the states g[n] follow the first order Markovian
property shown in Figure 1. The training label I[n)
in (29) depend on its context, with strong dependence
on its previous state g[n — 1]. To reduce the depen-
dency of I[n] into a tractable first order Markovian
form, a parameter p is introduced in the approxima-
tion

The parameter u controls the degree to which states
g[n] and context affect the training labels I[n]. Increas-
ing p biases the estimates of g[n] strongly towards I[n].
I(w,wP) is then expanded, using definitions (6) as

ZZ%[n—l 1Py n])* Pijn]

ﬂi[n + 1)(1 + pbrpn),i) log Pij[n] (31)

I(w,wP)

from which equation (8) can be readily identified, with
regularization parameters C;[n] in (9) and normaliza-
tion constant Z = 3, v;[N].



