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Delta—Sigma Cellular Automata for
Analog VLS| Random Vector Generation

Gert Cauwenberghsyviember, IEEE

Abstract—We present a class of analog cellular automata for ~ High-bandwidth, low-power analog noise generators in
parallel analog random vector generation, including theory on v/ S| are obtained by means of chaotic oscillators [24]-[26],

the randomness properties, scalable parallel very large scale o yhrq,9h recursion of a nonlinear map such as the logistic
integration (VLSI) architectures, and experimental results from

an analog VLS| prototype with 64 channels. Linear congruential Map or a linear congruential map [27]-[30]. o
coupling between cells produces parallel channels of uniformly ~ The most natural way to generate analog noise in VLSI
distributed random analog values, with statistics that are un- js to amplify existing circuit noise, which usually is more
correlated both across channels and over time. The cell for ¢ o isance than an aid to circuit design. Analog and
each random channel essentially implements a switched-capacitor . . .
delta—sigma modulator, and measures 10gm x 120 um in 2 binary random sources in VLS| have been demonstrated using
xm CMOS technology. The 64 cells are connected as a MASH amplified analog noise and a high-gain comparator [31], or
cascade in a chain or ring topology on a two-dimensional (2-D) using a latch initialized at the metastable operating point
grid, and can be rearranged for use in various VLSI applications [32]. The challenge of this approach is to control sensitivity
that require a parallel supply of random analog vectors, such hvsical h d minimi
as analog encryption and secure communications, analog built- 10 Physical parameters such as temperature, and minimize
in self-test, stochastic neural networks, and simulated annealing correlation effects across cells in an array due to unavoidable
optimization and learning. capacitive and power supply coupling.

Index Terms—Random generation, noise, delta—sigma modula- ~ Parasitic coupling between cells presents a problem to
tion, cellular automata, analog VLSI, neural networks, switched- most other analog approaches as well, such as mode-locking

capacitor circuits. phenomena in arrays of nonlinear oscillators, which cause
strong correlations across cells.
I. INTRODUCTION In this paper, we demonstrate that a particular form of

. L .n?nlinear coupling between cells not only avoids correlations
N-LINE random analog signal generation is an essentlacross cells, but in addition produces a truly random sequence
component in many of today’s analog very large scafe ' b y q

integration (VLSI) systems for signal or information proces n the.sgnse t.hat the outcomg of.a cell at. a given time
ing. An on-line supply of random analog vectors comes handfi, statlstlgally mdependent of its h|§tory. ThIS. remarkable
for instance, to support testing and characterization of tR&CPerty is impossible by construction in an isolated cell
hardware, or as part of the implemented algorithms. Exampl¥ih deterministic chaotic state recursion, regardless of the
of applications include encryption and secure communicatiofgniinearity in the map, and emerges from interactions with
[1]-[3], analog VLSI built-in self-test [4]-[6], and neuralN€ighbors. The interactions are nearest-neighbor as in cellular

computation [7], [8], simulated annealing optimization [9jautomata, and permit a simple scalable and parallel VLSI ar-
[10] and stochastic model-free |earning [11]_[14] chitecture. Our motivation to Study these structures is inSpired
Most commonly used in parallel VLSI are arrays of randofdy remarkable noise-shaping properties observed in MASH
binary sources implemented with linear feedback shift regigascade structures of delta—sigma modulators [33]-[36], as
ters (LFSR) [15], [16] or cellular automata (CA) [17], [18],used for stable higher order oversampled A/D conversion
which yield compact and scalable parallel VLSI architecturd¢87]—-[39]. As a particular case, we consider cellular arrays of
[20]-[22]. Analog random vectors with a near-gaussian ampliascaded delta—sigma modulators for the purpose of random
tude profile can be obtained from the binary random vectogsalog vector generation, arranged on a two-dimensional (2-D)
through low-pass filtering [19], [23]. Sequential correlationgrid or in a linear array for scalable VLSI implementa-
over time caused by filtering can be elimitated by subsamplirgpn.
at the expense of bandwidth. The following section introduces the basic cellular archi-
tecture and its variants, and relates delta—sigma modulation to
Manuscript received July 31, 1997; revised May 30, 1998. This work was congruential linear analog version of additive cellular au-
Supponied o X‘SP'X?SONE“fgglnf“eoggfﬁggt_'ff‘oég;Férﬁsr;et:ri?;‘{%'g wafomata. In Section Ill, the statistical properties of randomness
provided through MOSIS. are explored in theory. Section IV presents a compact analog
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Frooa) of theoretical study in the following section. First, we establish
the conditions for equivalence between the two mAps:(z)

and fax(z), which is important because the first is easier to
analyze (Section Ill) and the latter easier to implement (Section
IV). The following lemmas derive from [33], [34]:

Lemma 1: Let a first vector sequence (k) be defined by
(1) with constantsy, 3, and mapfax(.) in (3), and a second
sequencer}(k) with constantsy’ = « + 1, sameg, and map
Jmoa(.) In (2). If |a|+|B|#N < 2 and the initial values satisfy
—1 < x;(0) = 24(0) < 1, then—1 < x;(k) = (k) < 1 for
al £ > 0.

This lemma states that the two mappingax(.) and
fmoa(.) (offset by one) generate identical sequences, contained
in the [-1,1] interval, given identical initial conditions
contained in that interval. The proof follows by induction
k — k + 1, and from asserting that-1 < faxn(z) =

®) fumoa(x + 1) < 1 for any |z| < 2 (illustrated by Fig. 1). The
Fig.dl-l Tzwo gases considered fQéthe nonlinear rﬁ%r)_- @ C?n%(U%ntlmap condition|a|+|8|#N < 2 [where#N denotes the cardinality
(o 2, ) Quantizton resco map (asused i sngle bt et =9Bfine neighborhood ()] ensures that the argument fts(.)
(except for a unit offset). in (1) is always betweer-2 and 2 as needed.

Lemma 2: Let a first vector sequence’(k) be defined
by (1) with constantsy, 3 and map fuoa(.) in (3), and a
second sequencé’ (k) by the same constants but an identity

map f(z) = z. If 8 is integer and the initial values satisfy
The general structure we consider combines additive cellulgr(()) = fumod(27(0)), then zi(k) = fmoa(z!(k)) for all

automata [17] and cellular neural networks [18], togethefz 0.
with linear congruential maps [27], [28] or, as shown t0 be The last lemma states that the usual algebraic rules of
equivalent [34], delta—sigma modulation [39]. The interactionfiodulo arithmetic can be applied to the MARea(.) in (3).

Il. NONLINEAR NOISE-SHAPING
AND CELLULAR ARCHITECTURE

between cells are of the form In particular, modulo and linear operations commute under
the conditions satisfied by an integer choice firand the

zik+ 1) =fla+p Z z;(k) (1) dynamics of a modulo system can conveniently be analyzed

JENTE) from a linear system, which is equivalent under subsequent

] ) ) ) ~modulo transformation. The proof is by induction énand
where N (i) defines a neighborhood of cells interacting withy|ows from the fact that for each: fuoa(z) = = + 21

cell i including itself, and wher¢f(.) defines a nonlinear map. for some integer. Notice that the lemma is valid even for
Besides careful choice of the constantand 3, the form of noninteger values of. The lemma is used in the theory of
f(.) is critical to the randomness properties of the sequen&gction 11

. . B. Cascade and Cellular Stuctures
A. Nonlinear Mappings

The general template of nearest-neighbor interactions (1)
llows to formulate cellular networks of various topologies.
e simplest case to be possibly considered is a neighborhood
of two cells, including one neighbor besides the cell itself. The
Smoa(z) =2 if —1<z<1; largest absolute value possible f6rto satisfy the conditions
of Lemma 1 equals 1; any value lower than that would be

Two particular forms of the nonlinear mag(.) are of
interest, depicted in Fig. 1: the congruential map (or modu
operation) defined by the recursion

= fmou(z — 2) it %> 1 (2) undesirable for the purpose of generating random sequences
= fmoda(x + 2) if < —1 as explained in the following section. With= 0 and = 1,
o . L we obtain

and the quantization residue map (as used in single-bit

delta—sigma modulation) defined as zi(k4+1) = fas(zi(k) + zi_1 (k) (4)

fas(z) =z = sign(z) shown in Fig. 2(a). This is functionally equivalent to a MASH
=z -1 if x>0 (3) cascade of first-order, single-bit delta—sigma modulators [40],
where the quantization “noise” of the integrator of one stage
feeds into the next [37], [38]. To visualize this equivalence,
The noise-shaping effect by the congruent map (2) can betice that the integration loop (“sigma”) and the quantization
intuitively understood from the scrambling of state variablegsidue (“delta”) operations in Fig. 2(a) are permuted relative
that results from the modulo operations, and will be the subject the usual way a delta—sigma modulator is depicted [40].

=z+1 if ©<0.
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Fig. 3. Array of 64 MASH random generating cells. Linear cascaded chain

x"g(k) or ring topology implemented on a 2-D grid.

1 [zo = xn In (4)]. The ring structure is preferrable because
of symmetry which provides more uniform random noise
Fig. 2. MASH cascaded delta—sigma modulation. (a) System-level architgdOperties across the array, although stability of noise shaping
ture. (b) Equivalent linear congruential additive cellular automaton accordiing the feedback loop is an issue which will be addressed below.
to Lemma 1. Additions are modulo 2 as shown in Fig. 1(a). (c) Corresponding The linear cascaded chain and ring topologies can be
linear additive cellular automaton according to Lemma 2. . . . .
implemented in scalable cellular VLSI architectures on either
a one-dimensional (1-D) and 2-D grid. To realize the chain
Technicalities of compensating for systematic analog offseffd ring topologies on a 2-D grid, shown in Fig. 3, two sets of
aside [41], [42], cascaded structures of the MASH type ali@ear cascade segments are interleaved in opposing directions,
attractive for stable higher order oversampled A/D conversiognd external connections at the periphery of the array span no
since the modulators do not overload and the “noise” does mgbre than two adjacent cell spacings on the grid.
appear to correlate with the input, at least for constant andBefore proceeding to the experimental results from a VLSI
sinusoidal inputs [33] and iid random inputs [35], [36]. implementation, we first formally establish the randomness
As Lemma 1 asserts, the cascaded structure can alternatiygbyperties, serving as a theoretical foundation of the “why”
be viewed as an analog extension on Wolfram's rule 12fhd “how” of this work and of some of the arguments made
cellular automata [17};(k+1) = z;(k)®x;_1(k), where the above.
exclusive-or operator is replaced with a modulo summation op-
erator, shown in Fig. 2(b). Interestingly, the same modulo sum
operator has also been used to construct a self-synchronizing
analog encryption/decryption system [3]. Although the following analysis is performed in the special
The corresponding linear model of the cascade 6fS€ of the cascade of delta—sigma modulators (4), it is equally
delta—sigma modulators, according to Lemma 2, is shown @®plicable and straightforwardly extended to the general case
Fig. 2(c). The equivalence under the modulo operator provés for integer values of. The analysis addresses both spatial
especially useful in analyzing the randomness properties ayd temporal aspects of randomness: the statistical properties
the sequences;(k) = fmoa(xy(k)) from linear analysis of of a cell’s outcome conditional on the history of its neighbors
the sequence? (k). and itself, and the randomness of the time serigé) from
The quality (or “randomness”) of random vectors generatdi@ear analysis ofry (k).
in an array implementing (1) generally depends on the specifics
of the neighborhood templat&’(-) and the constants and A. Inter-Cell Statistics

p, besides the form of the boundary conditions applied atThe joint cell statistics can be analyzed using mathemat-
the periphery of the array. Our experience with alternatiygg| tools operating ordensities such as outlined in [43],
structures has shown that not much is to be gained ovg{y extended to the multivariate case involving conditional
the simple linear structure (4) in Fig. 2(a) by increasing thgopablities. The probability density of a céls outcome at

complexity of implementation with a template size larger tha§ne % conditional on cellj’s outcome at timd is formally
two. We limit the analysis to this linear cascade structurgefined as

which is conveniently implemented in analog VLSI as shown

in the following sections. Bl ) % tim Priz <ai(k) <z + Azf;() =y) (5)
We consider two special cases of boundary conditions for e Az—0 Az

the cascade structure 6f cellsz; - - -z : @ “chain” topology - similarly, the unconditional probability density is defined as

with a constant input supplied to the first element and

a “ring” topology with cyclic boundary conditions where the k() def .o Priz <z;(k) <z + Az) (6)

output of the last elementy feeds into the input of the first ‘ Az—0 Az

I1l. N OISE-SHAPING PROPERTIES
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which also can be expressed aﬁlpﬁ’]?(x|y)p§(y) dy by but also across different cells and over time. In other words,

application of Bayes' rule. a single random supply generates an array of random sources,
Clearly, the outcome of cell at timek + 1 only depends with the desirable property of spatial and temporal statistical

on those of cells andi — 1 at time & as determined by (4), independence across all channels.

or equivalently Of course, a system generating white noise from white noise

i _ i i at the input defeats the purpose of a randgemerator The
zi(k+ 1) = fmoa(wi(k) + zi—1(k) + 1) () following observation relaxes the requirement of a random
which after applying rules of modulo arithmetic can be refoinput to the first stage. Lep} , be an arbitrary probability
mulated as density distribution, feeding into cell Then the distribution

p¥ is determined by the following recursive integral equation:
xi—l(k) = fmod(xi(k + 1) - xz(k) + 1)

1

2i(k) = fumoa(wi(k + 1) — 21 (k) + 1) (8) Pyt (e) = /_1 piT M (ly)pl (v) dy
and thus ]

k k
= i— (fmo (-T_ +1))z( )d

p?jl’k(ﬂy) :pi‘c_l(fmod(a? —y+ 1)) /—llp 1 d Yy pi(y) dy

pfjﬁlik(xw) :p§(f1110d($ o 1)) (9) B / pffl(z)pi‘t(fmod(x —z+ 1)) dz (11)
-1

In particular, if element — 1 has uniform probability density
pi—1 = 1/2, then so does elemerit and furthermore the
conditional probability densities of, both on the previous
values ofi andi — 1, are uniform as well

where z = fioa(z — y + 1). Clearly, a valid steady-state
solution of the recursion ig¥ = pf‘l = 1/2. It is easy
to show that this is the only solution of the linear integral
equation (the asymptotic solution reached for o) in case
=Li=p(z) Ve,yel[-1,1]; Vk pk_, is strictly positive over the entire interval.
Lk 1 ) Thus, for any strictly positive, continuous-density distribu-
piii )=z =p"" (@) Veyel-L1: Vk (10) tion ph(x) at th)é inputhEe first cell in the cascadeyis already
In other words, a uniform density (not necessarily randomjandom” with a uniform probability density 1/2. Furthermore,
at the inputi — 1 implies a uniform density at the outputthe first cell's outcome is then independent of the input as
i, unconditionalon previous values of the input as well asn the case of a random input, from (@iHH* = pi*' =
the output itself. This establishes, instatistical sense, that 1/2. The only effects of nonrandomness in the inpgton
“source” i is “random,” and independent of the input- 1. the statistics of the other; are sequential correlations in
(Dynamical aspects of randomness are the subject of next Subsequent channels- 1 are random, uncorrelated, and
section.) independent as under the conditions of Theorem 1. This is
The same result can also be obtained directly by applyisgmmarized in the following corollary.
the Frobenius—Perron density operator [43] of transformationCorollary 1: The vector sequence;(k), i = 1--- N, k =
(7) to the conditional probabilities, for which uniform densitied - - - o obtained from a cascade of modulators according to
are a stationary solution. Property (10) is then easily extendedl with initial conditions—1 < #;(0) < 1 and boundary
to the general case of} . Because of causality, alreadyconditions —1 < xo(k) < 1, drawn from an everywhere
pf}l(aﬂy) = pl(z) = 1/2 for j<i or for I < k by strictly positive b_ut otherwise arb_ltre_lry _densn_y distribution
construction. The other combinations ofj and k,{ are Po, follows a uniform random distribution with mutually
obtained by induction on the markov chain that characterizé?lt'suca”y |£1dependent components exceptdor 1, i.e.:
the cascade of cells over time, by repeated application of thej (¢1%) = po(z) = 1/2,Vx,y € [-1,1]; where eitherk # {
Frobenius—Perron operator. As said, a cell’s outcome depefRig 7 J; excluding the singular case=j = 1 andk =/ +1.
directly on the outcomes of its immediate predecessor and\" €xample of a distributiop, which violates this condi-
itself, and so the markov property is a valid assumption. THiN is & DC zero inputzo(k) = 0 which clearly produces

induction, across the chain and over time, then establishes #@fistical anomalies in the outputs(k), especially if the
proof of the following Theorem: initial conditionsz;(0) are zero as well. Such artifacts are not

Theorem 1: The vector sequence;(k),i = 1---N, k = of much concern in analog implementations where zero-valued

1-.-0c obtained from a cascade of modulators according fggions in probability distributions are excluded because of

(4) with initial conditions—1 < z;(0) < 1 and boundary N0ise and parameter fluctuations.

conditionszo(k) drawn from a uniform random distribution, . _ ) ]

ie. p’g{)(azw) = pk(z) =1/2.Vx,y € [-1,1]; k # 1, follows B. Dynamics of Chain and Ring Topologies

a uniform random distribution with mutually statistically inde- Clearly, a purely statistical analysis of a purely deterministic

pendent components, i.q;ﬁf’j(aﬂy) = pk(r) = 1/2,Yz,y € system cannot capture all effects which distinguish a “good”

[-1,1]; where eitherk #£ [ or i # j. random generator from a lousy one. The emphasis in the pre-
The theorem states that when a uniform random input ¥v8us section was on statistical independence across channels

supplied to the first element in a chain of MASH cells, alind over time. Next we study the dynamics of the channel

cells in the chain also produce uniform random outputs, whichutputs, as determined by by the topology of the cascade of

are statistically uncorrelated not only with the supplied inputells.

b1,k
p;; (zly) = é
1
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Equation (4) forms a dynamical system of which the noise- k,0 def
shaping properties can be studied in closed form using standard ~ *~
linear analysis techniques. The analysis here generalizes pre- .

. y ques. nay g hieValid wherex; (k) # 0 and z;(0) # 0 or xzo(l) # 0.
vious results on quantization noise in a cascade of MA L expected, the sensitivity of the channel outputk) to
delta—sigma modulators [33] mainly in two ways: an arbitrarg P ’ y i

nout ted hain of cell d 2 closed ri ¢ cel revious outputsz;(0) and distant outputsco(l) increases
input presented to a chain of cells, and a closed ring of cell ;" with timek and with distance.

~ Lemma 2 allows rendering of (4) and (7) into an equivalent  gocond important observation is that because all binomial
linear form, illustrated in Fig. 2. To further simplify analysisqefficients are integers,antinuouslyuniform distribution of
the unit offset term shown in Fig. 2(c) is eliminated by th%i(k) requires that at least one of the termgl) or #;(0) in

=CF . =~ Ok 17)

i—j

a(k) ‘
dz;(0)

substitution of variables in (7) (16) be an irrational number. When this condition is met (by
. making at least oneq(!) or x;(0) irrational within the[—1, 1]
2i(k) = fmoa(Zi(k) — 1) (12) range), it can be shown (using similar methods as employed in

[33]) that the output modulation sequencgk) is uniformely

yielding a set of homogeneous linear equations distributed and uncorrelated with the inpug(k).

Filk + 1) = 35(k) + Fi_1 (k) (13) 2) Closed ng:A closed ring t(_)pology WltrN modulat.or
cells can be considered as a special case of a linear chain where
transformed into the:-domain as xg = zn. In principle, since the above analysis for the chain
topology does not assume any structuredgfk) (other than
Xi(2) = 1 Xi_1(2). (14) it be contained in the modulation range interval), the above
z—1 conclusions apply here as well. However, the modulation

Each celk is thus represented by an accumulator with transfdynamics for a ring topology is entirely different by nature
function 1/~ — 1. of the feedback. Closing the loop implies

1) Linear Chain: For a chain topology, the output of cell < 1 >N

i is determined by Xi(z) = X,(z) (18)

z—1

Xi(2) = < 1 )ZXO(Z) (15) for any celli. The complex eigenvalues, in the z-domain,
z—1 satisfying ((1/z, — 1)) = 1, are given by

yvhich, transformgd back in the ~time-doma_in_, can be e_>_<pressed 2, = 14 i27(/N) n=0---N—-1 (19)

in terms of the input sequenc& (k) and initial conditions

z;(0) as and the eigenvectors, satisfyidg® = [1/(z, — 1)] X ,, are
correspondingly

M1

Ei(k) = @O+ #H(0)CE;  (16)
=1

N
Il
S

X] = eI n/N), (20)

def . . . _
whereC{ = ¢!/pl(g — p)!, denoting binomial coefficients. o ' o .
An important observation here is that the series (16) divergt8€ general solution in the time-domain is then given by

for k — oo, and more strongly so for larger z;(k) tends N1
either toO(k*) or O(k*~1), depending on the particular input #i(k) = Z en X () (21)
sequenceiy(k). The effect of the folding nonlinearity,,oa n=0

in (12) on (16) produces an output(k), highly sensitive to h | ; dint fth
initial conditions. This might seem to indicate the presence ghere the comp ?X constants are expressed in terms of the
initial conditions z,(0) as

chaos, although this is not the case since the chain topology

has a zero Lyapunov exponent (all poles are located=atl, N-1 ] V-t
or s = 0). _ ' | o Zi(k) = @(o)(N > ngy*(zn)k> (22)
To further quantify the effect, analytical partial derivatives j=0 n=0

of z;(k) to initial and boundary values can be evaluated
directly from (16). LetS}/ denote the sensitivity af;(k) to
z;(1), defined as the absolute value of the partial derivativ

Note that any small change in corresponds to an |dent|cala strict positive Lyapunov exponent, and therefore exhibits

change inz under transformation (12) except where= 0,  «jeterministic chaos” according to the standard definition. The
since the derivative off,,,,q iS unity everywhere but at its sensitivity to the initial values is

discontinuities. Thus

The dominant dominant eigenvalue i§ = 2, and the
series diverges rapidly if at least one of thg0) is nonzero:
%;(k) ~ O(2F) ask — oc. The ring topology has clearly

N—-1
(K ) . 1 S ) )
:tbl d:ef axz(k)‘ _ Ok—l—l ~~ O((/ﬂ/ _ l _ 1)171) SZk’;O — N Z XZ XJ (zn)k = O(2k) (23)

83:0(1) il

n=0
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Notice that for anyi, there is ak’ for which 2* > k* for can be quantified as follows. Let(!) represent the root-mean-
all k> k', and thus any channel in a ring is more sensitivequare noise contributed physically to the!) variable at time
to previous and distant channels, on the long term, than ahyrhen the long-term, cumulative effect onto variaplék) at
channel in a chain of arbitrary length. time k, in terms of the root-mean-square deviatifk) from

As long as at least one real or imaginary components thfe noiseless case, can be estimated from the sensitiﬁ’;ft;ijés
z, IS irrational, so is the sequencg(k) regardless of the as

initial values #;(0) (provided one of them is nonzero), and . Nl 1/2
the modulation output is uniformly distributed. Such is the i ol 2
case forN = 3 and N > 4. There is, however, one artifact di(k) = Z Z (Si,jni(l)) (24)

that potentially terminates the random output under certain =0 =0

circumstances. This artifact exists only for even values ﬁfcreasing sharply withk, and especially so for the ring
N, and is due to the presence of a zero eigenvalue f@jpology. Even under arbitrary low noise conditions, the
n = N/2. The corresponding “terminator” eigenvector igjeviation from the nominal dynamics in(k) as studied above
real with constant amplitude, alternating sign from one celkows rapidly, and renders the output unpredictable after a
to the next. If at any time: the state of the ring modulator number of cycles:, as the cumulative noise amplitude( )
z;(k) reduces to any scaled version of this eigenvector g(tgrows the nominal signal level; (k).
any of the equivalent vectors on the grid invariant to the Notice that the compressive nonlinearify.q folds any
fmoa transformation, then the modulator halts in the zero staigcess signal back into te-1, 1] range. Sincel; (k) quickly
starting in the next cycle;(l) = 0 and z;(I) = £1, for all goes to infinity, the folding effectivelghapesthe amplified
I > k. The chance of this artifact actually occuring is virtuallyygise d;(k) into a uniform distribution regardless of the
zero in an analog implementation, but is significant in a digitgistribution of the generating, ({) noise sources. This type of
implementation with fixed-point arithmetic. noise-shaping is in addition to the deterministic noise-shaping
of quantization noise in the delta—sigma modulators, and adds
a truly random component to the output, absent in digital
implementations. In analog implementations, noise shaping
Generating truly random numbers from a deterministiof this type avoids problems that arise in systems which
infinitely precise, limited resolution system such as a digitalirectly amplify the noise contributed by physical sources, i.e.,
computer is clearly utopia. Generating “pseudo-random” sa-nonuniform amplitude distribution affected Hy f noise
guences with random-like properties has been a challengeatal temperature variations, and correlation across channels
computer scientists that involves intricate mathematics sudbe to parasitic coupling. By nature of the properties studied
as number theory and the like [27]. The random properties alfove, an analog array of MASH modulators shapes the noise,
analog counterparts of these random generators are drasticadigtributed by the quantizers and by physical sources, into
different, owing to the infinite resolution of the analog repmutually independent, uniformly distributed, random channels.
resentation, and the intrinsic randomness of additive noise in

the physical implementation. IV. |MPLEMENTATION

All of the complications that have arisen in the above Th f MASH dulat be impl ted i
study of the dynamics of coupled modulators are due to € array o modulators can be implemented in a

artifacts specific to discrete (digital) rather than continuod@riety of VLSI technologies, digital and analog. The archi-

(analog) systems. For instance, in analog implementatio}%(fture using .m.odullo arithmetic. depicteq In Fig. 2(b) is most
the realization of rational numbers has zero probability, aﬁautable_ for digital |mplementat|on_s, using carry-free adders
physical noise washes away any of the effects of clo d registers. Analog implementations are more served by the

proximity to a rational number (analogous, say, to the role 8];rulcture ;)deig._ 2(a), hs_inr::e the nonlineatrif)@ (ijs J_iradily .
noise in flipping or flopping a metastable flipflop). On the othdp'Piemented using a high-gain comparator and ditierencing

: - . . rcuitry.
hand,any number represented in a digital computer is ratlona(f! . L : .
and “random” sequences are guaranteed to repeat themselvgg,he discussion in the foregomg sgchon has made. _the
vantages of an analog implementation clear. In addition,

with a period which in thebestcase equals the number of?

different discrete states (minus one) [28]. Similarly, the artifafrf'tn"’“_OgI VLSI_ impleme_ntation offers p_oFentiaIIy higher_inte-
of the zero eigenvalue in a ring topology with even numb ation density and higher energy efficiency than equivalent

of cells affects digital implementations only. In analog, th igit-al VLSI implementatiopg. Unlike more copventigl a_nalog
chance of precisely hitting a member of the family of th esigns, where high precision and high noise rejection are

“terminator” eigenvector is again zero, and even if one ge%lmary Qe5|gn constraints, tge. cireuits can be |mptlerE_enteg
close enough, the devastating effect of the aftermath is wasi%'[il; miNIMUmM-siz€, NOISy and Imprecise components biase

away quickly by virtue of the additive physical noise injecteat wer currents. E_ffects of _component noise and mismatches
into the system. In the implementation are discussed below.

The role of additive noise and dithering in delta—sigma )
modulation has been studied extensively, e.g. [35], [36]. Ffr Architecture
the ring and chain topologies of MASH modulators studied The analog VLSI implementation presented here targets
above, the effect of additive noise in an analog implementatiapplications of on-line random generation integrated in VLSI

C. Analog versus Digital
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Fig. 4. Switched-capacitor MASH modulator cell. (a) Simplified circuit

diagram. (b) Timing diagram. The transistor-level circuit diagram of the MASH cell is

shown in Fig. 5. For low-power operation and compatibility

] ] . ) with digital interface circuitry, the circuit uses a single supply
systems for information and signal processing, where a stquzl()(/l’ setto 5 V for the experiments. The signal ground level is

stream of random variables are required locally, in parallelet 101, = 2 v, and the signal range i&1 V as determined
and in analog format. We have adopted an implementatigy the D/A levels,V.". = 1 V and V1 = 3V, symmetric

ref

style using low-power, high-density switched-capacitor CityroundV;,. Thus
cuits, producing a voltage output formaf (k). Compact

alternative realizations using current-mode technology, such
as used in [30], can be derived as well. where Viagge = 1 V.

The swnc_hed—_capamtq archltect.ure .|mplement|ng ok The amplifier A is implemented as a single, noncascoded
MASH cell in Fig. 2(a) is shown in Fig. 4(a), and the,qe,46,MOS inverter M1-M2. The relatively low gain of
corresponding signal timing diagram is given in Fig. 4(bl,is gesign is adequate for the purpose of a random gener-
The state Vi(k), corr_espondmg tox;(k) in Fig. _Z_(a), 'S ator, where linearity and gain errors are less important than
stored across capacit@r,. To save power and silicon real o yer dissipation and size. The virtual ground voltage of the
estate, the amplifierl serves the dual purpose of accumulatagyyjifier, used for the precharge in the sampling phase of the
1/(z—1) and quantizeffax;, controlled by the COMP signal. 4ccumulator, is obtained from circuit M3-M4, of which the
When COMP is active (high), amplified comparesl; with vy, pias is generated froi,,. The reason for not precharging
zero, and presents the result (signioj to the accumulator girectly from the unity gain connected amplifier is because
input through the inverting of one-bit D/A convertérWhen  the accumulator output is needed simultaneously to precharge
COMP is inactive (low),Vi(k) is presented to the outputihe next cell, occupying the amplifier. This introducksf
OUT. The accumulator functions as a standard switchegbise in the accumulator, which otherwise would have been
capacitor noninverting integrator [39], where in the samplingancelled by a correlated double-sampling technique. Finally,
phase the capacitd?; is precharged to the input, and in thehe capacitance€; and C, are 0.2 pF in 2um technology,
accumulate phase this charge is transferred onto capdgitor enough to provide adequate matching, and to avoid excessive
This operation is controlled with signals AC@; and ¢», switch-injection and clock-feedthrough noise contributed by
repeated twice as shown in Fig. 4(b) (phases, andc-0). the switchesp; and ¢s.

The input to the accumulator is controlled by the SEL signal, The layout of the cell, measuring)0X x 120X in a double-
which first selects the output from the preceding stéige (k) metal, double-poly CMOS process, is shown in Fig. 6. The
presented to IN, and then the output from the comparator. Téecond poly is used for capacitors only, which can be replaced
four-phase operation is summarized as follows: by MOS gate oxide capacitors. In 0.25h CMOS technology,

1) sample input’;_; (k) from previous stage; this layout supports the integration of over half a million cells

2) accumulate; on a single 1 crhchip, although this obviously excludes any

3) compare with zero and sample inverted result; circuitry actually using the array of random numbers.

4) accumulate, yieldindg;(k + 1).

Functionally, the first accumulate producegk) + z;_1(k),
and the second accumulate subtracts the sign of the first. Th&@he scaling of the technology brings up issues of circuit
net operation thus yieldgax(z; (k) + z,—1(k)) as desired.  noise and mismatch, and their effect on performance. Sources

‘/;(k) = Vrn + erangexi(k) (25)

C. Sources of Imprecision and Noise
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P —

Fig. 6. Layout of switched-capacitor MASH modulator cell. Dimensions are

100X x 120X in MOSIS scalable CMOS technology.
Fig. 7. Micrograph of the 64+1)-channel VLSI parallel random analog
vector generator, including ah x 8 array of MASH modulators plus one

of noise are mainly thermal noise as contributed by tiestra modulator. Dimensions are 2.22 min2.25 mm in 2um CMOS.
capacitances”; and C>, and 1/f noise of the amplifier

M1-M2 and the virtual ground circuit M3-M4. Both scalésftset  is included in (1), under a transformation of variables
inversely with A. Noise is an issue mostly for applicationsjmijar to (12).

requiring reproducible “random” sequences for given initial

state conditions, in particular for analog encryption and secure

communications. However, increased noise is desirable (or at V. EXPERIMENTAL RESULTS
least not undesirable) when quality of randomness is the onlyFig. 7 shows a micrograph of the tiny (2.22 mg 2.25
concern. mm) 2 um CMOS chip prototyped through MOSIS, which

The most significant imprecisions in the implementation aigtegrates a 2-D array of 64 MASH cells configured as
the finite gain of the amplifier and the mismatch between thown in Fig. 3, plus one extra MASH cell and additional
two capacitors, which affect the gain and linearity of the cefest circuitry. Of the 64 channels, two can be randomly
transfer function. The results of Theorem 1 and Corollaiyccessed at the same time by means of two independent sets
1 hold only for integer values of the gaifi in (1), and a of horizontal and vertical address-decoded multiplexers. This
small deviation from3 = 1 introduces slight nonuniformities allows characterization of any pair of channels simultane-
in the conditional probabilitiesy; 7" and p{ 72" in (9), ously.
even though the unconditional probabilitig$ are mostly  All experimental results reported in this paper were obtained
unaffected. The effect gf mismatch on statistical dependencérom this chip. Experiments were performed on chain and
is thus constrained locally in time and space, and can kg topologies with 64 and 65 cells, using the array and the
virtually eliminated by “oversampling” in time or space. Thextra modulator. Although the theory predicts differences in
effect of gain nonlinearity is qualitatively similar. Effects ofdynamical properties for rings with even and odd number of
small gain and nonlinearity errors on the dynamics of theells NV, these effects are unobservable in the data obtained for
modulator chain and ring topologies are of minimal impac64 and 65 cells. The data shown is limited to the c&se 65,

The effect of gain variations on the dynamics can be formalgnd the complete data set is available on request.
analyzed from sensitivities (17) and (17) after inclusion of the Iterative Map: The measured iterative map and transfer
appropriates terms. characteristic of a single MASH modulator cell, implementing

Switch-injection noise and clock-feedthrough in thé4), is shown in Fig. 8, for a spectrum of input and output
switches and transistor mismatches contribute an offset ervoitages in the range of th& _;, V.,] interval. The combined
« which does not affect performance. As a matter of fact, amain errors are in the order of 5%, and their effect on the
of the properties studied above still apply when an arbitrargndom statistics, as anticipated above, is evaluated next.
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Fig. 8. Measured Iterative map of a single MASH modulator cell. Time

Fig. 11. Measured transient dynamics of the 65-cell chain, from zero-level

1 ga”a?‘n;% ] SR (Vi) initial conditions, and for zero-levelV;,, ) input to the first cell.
CHZ2 588%% : |

recorded over several consecutive channels and time delays
on the 65-cell ring. The graphs show(k) versusz;(l),
producing a scatter plot corresponding to the joint probability
density which ideally should be uniform. The only perceptable
effects of any (nontrivial) correlations across outputs appear to
be between consecutive values in two neighboring channels,
x5(k 4+ 1) versusz4(k) andz5(k). As anticipated in Section
IV-C, the linear gaps in the otherwise uniform distribution in
the z5(k)-z5(k + 1) andz4(k)-z5(k + 1) graphs are due to a
value of the gain3 less than one, which cause certain values
in the [—1, 1] interval to be inaccessible te;(k + 1) from a
given z; (k) or x;_1 (k) initial value. If this nonuniformity is

Fig. 9. OscilloscopeX-Y plot showing outputs from two neighboring @ Serious issue, it can be reduced by increasing the open-loop
channels in the 65-channel ring. gain of the amplifier and compensate for various mismatches.
Alternatively, a simpler remedy mversamplingeither in space

or in time, e.g., skipping every other sample in the sequence or
every other cell in the cascade. Notice that even without such
methods, the quality of random vector generation obtained
“as is” should be more than adequate for most purposes,
especially given that conventional designs based on congruent
linear recursions or other iterative maps are by construction
entirely deterministic over time (the;(k)-z;(k + 1) scatter

plot condenses to a solid curve).

For a 65-cell chain topology with constant zero-level input
to the first cell, the obtained results were qualitatively similar,
except for the first few channels which showed systematic
correlations, due to transient effects studied next.

Dynamics: The effect of chain and ring topologies on the
transient and steady modulation dynamics, recorded across the
12 3 1 2 3 1 a2 3 1 s 1 » 3 entire 65-cell cascade over 80 time steps, is illustrated in Figs.

V., (k) v, k) V,k) v,k V. (k) 11 and 12. In both cases, transient effects due to near-zero
Fio. 10, Measured time-soace correloaram. Scatter plots of data from initial conditions for all cells, are clearly visible for the first
659--cell .ring, across five neighboring cellgsJ and five conspecutive time delayié%v (%5) cygles. For the chain topolpgy in Fig. :!'1’ Fhe first few

(~3) cells display a tendency to limit cycle oscillations, due to

Statistics: The hypothesis of statistical independeqﬁf‘ql the degenerate effect of a near-zero DC input to the first cell as
across channels and over time, theorized in Section I1I-A, weliscussed in Sections IlI-A and IV-C. Power density spectral
tested experimentally, illustrated in Fig. 9 for two concurrergnalysis of experimental data over a 1024-point rectangular
neighboring outputs, and shown in further detail in Fig. 1@me window, shown in Fig. 13, reveals that effects of limit

Vs (k)

V() Vg(k+3) Vg(k+2) Vi (ke1)
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S = properties. In any case, by the folding nature of the modulation
60| B e e e A R o g e T as discussed in Section Ill, the noise at the output is shaped into

; o mEa e : - a uniform random distribution independent of the structure of
the injected circuit noise.

413
=]
T

VI. CONCLUSIONS

Delta—sigma modulation and modulo arithmetic have been
combined in a cellular architecture for parallel analog random
vector generation, with statistical properties that are unique to
the functional form of interactions across cells and not found
; in arrays of separate analog random generators: statistical
= ": independence over time and across channels. We have formally
= analyzed these properties for two architectures (chain and
= ring topologies), and experimentally verified the results on a
o555 : Eefi : : 65-channel VLSI prototype.

10 20 30 40 50 60 70 80 As in the linear congruential map, the modulo operation
Time produces a uniform random amplitude distrubution for each
Fig. 12. Measured transient dynamics of the 65-cell ring, from zero-levef the cell state variables. However, the contribution by
(Vin) initial conditions. the neighboring cells to the modulo sum scrambles the de-
pendency of the cell's state on its previous value, and we
10° 10° have shown that this produces a uniform random sequence
void of sequential correlations so characteristic of the linear
congruential generator and other iterative chaotic maps. We
have also shown that the modulo sum nature of the coupling
between cells avoids any correlations between cells across
10 10 the array. The randomizing effect of this strong nonlinear
0 512 1024 0 512 1024 coupling is fundamentally different from mode-locking and
@ () synchronization phenomena that arise in arrays of weakly
N 0 coupled oscillators.
10 10 The functional equivalence between linear congruent mod-
ulation and delta—sigma modulation offers elegant circuit im-
10—2WWWM 1O_ZWWMWW plementations both in analog and digital VLSI technologies.
Owing to noise-shaping properties similar to quantization
noise in delta—sigma modulation, the amplification and mod-
10" 10 ulation of physical noise present in an analog implementation
0 512 1024 0 512 1024 generates truly random, nonperiodic sequences with statis-
' ' © _ _ @ tics that are guaranteed uniform, void of some anomalies
o o o B oty et potentialy ocour when using limitec-resolution, nfinit-
Cell. (c) Fourth Cell. (d) 65-cell ring. precision arithmetic as in a digital implementation. The amount
of injected physical noise clearly determines the extent in
cycle oscillations or other colored spectral features are limitéiche to which the random sequences are reproducible from
to no more than the first three stages of the chain, and ailentical initial conditions. The tradeoff between randomness
absent in the ring. and reproducibility is an important issue for applications of

System-Level Issuesthe operation of the chip has beeranalog encryption. We have performed a sensitivity study
verified over a range of speeds from 2 Ksamples/s to B@sed on an analytical model of the dynamics, quantifying
Ksamples/s per channel. The maximum of 50 Ksamples/s percertainty in the sequence as a function of time and distance
channel obtained is affected by external capacitive loadifigm given initial or boundary conditions.
of the (multiplexed) output which has not been buffered. Finally, results from a fabricated 64(+1)-channel prototype
Measurements of supply currents yield power dissipation2-um CMOS technology confirm the theoretical results, and
levels ranging from 1&:W to 245, W per cell, corresponding indicate that effects of component mismatches and other circuit
to 6 nJ of energy dissipated per sample. Extrapolation of thaegperfections are not detrimental to the statistics and dynamics
results are technology dependent; scaling of the technologfythe modulation sequences. The implementation architecture
(from 2 um to deep submicron feature sizes) would allows equivalent to a MASH cascade of delta—sigma modulators,
to further reduce energy consumption and increase availabfewhich the noise-shaping properties inspired much of this
bandwidth at least proportionally. Increased circuit noise levelork. While the particular switched-capacitor design used to
caused by the downscaling of the capacitors are a concenplement the MASH modulator serves for demonstration
only to the extent to which reproducibility of the modulatiompurposes only, the cell layout supports the integration of
output sequences is more important than their randomnes®r half a million random generators on a 1 “cmiie in
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0.2-um CMOS technology. Besides the excellent statisticgd4] A. Rodriguez-Vazquez and M. Delgado-Restituto, “CMOS design of
properties, the small size and low energy consumption of the
random cell make it particularly well suited for large-scalgs)
integrated applications of parallel distributed analog signal and
information processing, where an on-line supply of randoff®!
values is embedded locally with each processing element.
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