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Delta–Sigma Cellular Automata for
Analog VLSI Random Vector Generation

Gert Cauwenberghs,Member, IEEE

Abstract—We present a class of analog cellular automata for
parallel analog random vector generation, including theory on
the randomness properties, scalable parallel very large scale
integration (VLSI) architectures, and experimental results from
an analog VLSI prototype with 64 channels. Linear congruential
coupling between cells produces parallel channels of uniformly
distributed random analog values, with statistics that are un-
correlated both across channels and over time. The cell for
each random channel essentially implements a switched-capacitor
delta–sigma modulator, and measures 100�m � 120 �m in 2
�m CMOS technology. The 64 cells are connected as a MASH
cascade in a chain or ring topology on a two-dimensional (2-D)
grid, and can be rearranged for use in various VLSI applications
that require a parallel supply of random analog vectors, such
as analog encryption and secure communications, analog built-
in self-test, stochastic neural networks, and simulated annealing
optimization and learning.

Index Terms—Random generation, noise, delta–sigma modula-
tion, cellular automata, analog VLSI, neural networks, switched-
capacitor circuits.

I. INTRODUCTION

ON-LINE random analog signal generation is an essential
component in many of today’s analog very large scale

integration (VLSI) systems for signal or information process-
ing. An on-line supply of random analog vectors comes handy,
for instance, to support testing and characterization of the
hardware, or as part of the implemented algorithms. Examples
of applications include encryption and secure communications
[1]–[3], analog VLSI built-in self-test [4]–[6], and neural
computation [7], [8], simulated annealing optimization [9],
[10] and stochastic model-free learning [11]–[14].

Most commonly used in parallel VLSI are arrays of random
binary sources implemented with linear feedback shift regis-
ters (LFSR) [15], [16] or cellular automata (CA) [17], [18],
which yield compact and scalable parallel VLSI architectures
[20]–[22]. Analog random vectors with a near-gaussian ampli-
tude profile can be obtained from the binary random vectors
through low-pass filtering [19], [23]. Sequential correlations
over time caused by filtering can be elimitated by subsampling,
at the expense of bandwidth.
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High-bandwidth, low-power analog noise generators in
VLSI are obtained by means of chaotic oscillators [24]–[26],
or through recursion of a nonlinear map such as the logistic
map or a linear congruential map [27]–[30].

The most natural way to generate analog noise in VLSI
is to amplify existing circuit noise, which usually is more
of a nuisance than an aid to circuit design. Analog and
binary random sources in VLSI have been demonstrated using
amplified analog noise and a high-gain comparator [31], or
using a latch initialized at the metastable operating point
[32]. The challenge of this approach is to control sensitivity
to physical parameters such as temperature, and minimize
correlation effects across cells in an array due to unavoidable
capacitive and power supply coupling.

Parasitic coupling between cells presents a problem to
most other analog approaches as well, such as mode-locking
phenomena in arrays of nonlinear oscillators, which cause
strong correlations across cells.

In this paper, we demonstrate that a particular form of
nonlinear coupling between cells not only avoids correlations
across cells, but in addition produces a truly random sequence
in the sense that the outcome of a cell at a given time
is statistically independent of its history. This remarkable
property is impossible by construction in an isolated cell
with deterministic chaotic state recursion, regardless of the
nonlinearity in the map, and emerges from interactions with
neighbors. The interactions are nearest-neighbor as in cellular
automata, and permit a simple scalable and parallel VLSI ar-
chitecture. Our motivation to study these structures is inspired
by remarkable noise-shaping properties observed in MASH
cascade structures of delta–sigma modulators [33]–[36], as
used for stable higher order oversampled A/D conversion
[37]–[39]. As a particular case, we consider cellular arrays of
cascaded delta–sigma modulators for the purpose of random
analog vector generation, arranged on a two-dimensional (2-D)
grid or in a linear array for scalable VLSI implementa-
tion.

The following section introduces the basic cellular archi-
tecture and its variants, and relates delta–sigma modulation to
a congruential linear analog version of additive cellular au-
tomata. In Section III, the statistical properties of randomness
are explored in theory. Section IV presents a compact analog
VLSI implementation, and Section V includes experimental
results from a 64-channel (and 65-channel) CMOS prototype.
Finally, Section VI concludes the paper.
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(a)

(b)

Fig. 1. Two cases considered for the nonlinear mapf(:). (a) Congruent map
(modulo 2). (b) Quantization residue map (as used in single-bit delta–sigma
modulation). The shaded inset shows the region where both maps coincide
(except for a unit offset).

II. NONLINEAR NOISE-SHAPING

AND CELLULAR ARCHITECTURE

The general structure we consider combines additive cellular
automata [17] and cellular neural networks [18], together
with linear congruential maps [27], [28] or, as shown to be
equivalent [34], delta–sigma modulation [39]. The interactions
between cells are of the form

(1)

where defines a neighborhood of cells interacting with
cell including itself, and where defines a nonlinear map.
Besides careful choice of the constantsand the form of

is critical to the randomness properties of the sequence

A. Nonlinear Mappings

Two particular forms of the nonlinear map are of
interest, depicted in Fig. 1: the congruential map (or modulo
operation) defined by the recursion

if

if

if

(2)

and the quantization residue map (as used in single-bit
delta–sigma modulation) defined as

sign

if

if

(3)

The noise-shaping effect by the congruent map (2) can be
intuitively understood from the scrambling of state variables
that results from the modulo operations, and will be the subject

of theoretical study in the following section. First, we establish
the conditions for equivalence between the two maps
and which is important because the first is easier to
analyze (Section III) and the latter easier to implement (Section
IV). The following lemmas derive from [33], [34]:

Lemma 1: Let a first vector sequence be defined by
(1) with constants , and map in (3), and a second
sequence with constants same and map

in (2). If and the initial values satisfy
then for

all
This lemma states that the two mappings and

(offset by one) generate identical sequences, contained
in the interval, given identical initial conditions
contained in that interval. The proof follows by induction

and from asserting that
for any (illustrated by Fig. 1). The

condition [where denotes the cardinality
of the neighborhood ] ensures that the argument of
in (1) is always between and 2 as needed.

Lemma 2: Let a first vector sequence be defined
by (1) with constants and map in (3), and a
second sequence by the same constants but an identity
map If is integer and the initial values satisfy

then for all

The last lemma states that the usual algebraic rules of
modulo arithmetic can be applied to the map in (3).
In particular, modulo and linear operations commute under
the conditions satisfied by an integer choice forand the
dynamics of a modulo system can conveniently be analyzed
from a linear system, which is equivalent under subsequent
modulo transformation. The proof is by induction onand
follows from the fact that for each
for some integer Notice that the lemma is valid even for
noninteger values of The lemma is used in the theory of
Section III.

B. Cascade and Cellular Stuctures

The general template of nearest-neighbor interactions (1)
allows to formulate cellular networks of various topologies.
The simplest case to be possibly considered is a neighborhood
of two cells, including one neighbor besides the cell itself. The
largest absolute value possible forto satisfy the conditions
of Lemma 1 equals 1; any value lower than that would be
undesirable for the purpose of generating random sequences
as explained in the following section. With and ,
we obtain

(4)

shown in Fig. 2(a). This is functionally equivalent to a MASH
cascade of first-order, single-bit delta–sigma modulators [40],
where the quantization “noise” of the integrator of one stage
feeds into the next [37], [38]. To visualize this equivalence,
notice that the integration loop (“sigma”) and the quantization
residue (“delta”) operations in Fig. 2(a) are permuted relative
to the usual way a delta–sigma modulator is depicted [40].
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(a)

(b)

(c)

Fig. 2. MASH cascaded delta–sigma modulation. (a) System-level architec-
ture. (b) Equivalent linear congruential additive cellular automaton according
to Lemma 1. Additions are modulo 2 as shown in Fig. 1(a). (c) Corresponding
linear additive cellular automaton according to Lemma 2.

Technicalities of compensating for systematic analog offsets
aside [41], [42], cascaded structures of the MASH type are
attractive for stable higher order oversampled A/D conversion,
since the modulators do not overload and the “noise” does not
appear to correlate with the input, at least for constant and
sinusoidal inputs [33] and iid random inputs [35], [36].

As Lemma 1 asserts, the cascaded structure can alternatively
be viewed as an analog extension on Wolfram’s rule 120
cellular automata [17] where the
exclusive-or operator is replaced with a modulo summation op-
erator, shown in Fig. 2(b). Interestingly, the same modulo sum
operator has also been used to construct a self-synchronizing
analog encryption/decryption system [3].

The corresponding linear model of the cascade of
delta–sigma modulators, according to Lemma 2, is shown in
Fig. 2(c). The equivalence under the modulo operator proves
especially useful in analyzing the randomness properties of
the sequence from linear analysis of
the sequence

The quality (or “randomness”) of random vectors generated
in an array implementing (1) generally depends on the specifics
of the neighborhood template and the constants and

besides the form of the boundary conditions applied at
the periphery of the array. Our experience with alternative
structures has shown that not much is to be gained over
the simple linear structure (4) in Fig. 2(a) by increasing the
complexity of implementation with a template size larger than
two. We limit the analysis to this linear cascade structure,
which is conveniently implemented in analog VLSI as shown
in the following sections.

We consider two special cases of boundary conditions for
the cascade structure of cells : a “chain” topology
with a constant input supplied to the first element and
a “ring” topology with cyclic boundary conditions where the
output of the last element feeds into the input of the first

Fig. 3. Array of 64 MASH random generating cells. Linear cascaded chain
or ring topology implemented on a 2-D grid.

[ in (4)]. The ring structure is preferrable because
of symmetry which provides more uniform random noise
properties across the array, although stability of noise shaping
in the feedback loop is an issue which will be addressed below.

The linear cascaded chain and ring topologies can be
implemented in scalable cellular VLSI architectures on either
a one-dimensional (1-D) and 2-D grid. To realize the chain
and ring topologies on a 2-D grid, shown in Fig. 3, two sets of
linear cascade segments are interleaved in opposing directions,
and external connections at the periphery of the array span no
more than two adjacent cell spacings on the grid.

Before proceeding to the experimental results from a VLSI
implementation, we first formally establish the randomness
properties, serving as a theoretical foundation of the “why”
and “how” of this work and of some of the arguments made
above.

III. N OISE-SHAPING PROPERTIES

Although the following analysis is performed in the special
case of the cascade of delta–sigma modulators (4), it is equally
applicable and straightforwardly extended to the general case
(1) for integer values of The analysis addresses both spatial
and temporal aspects of randomness: the statistical properties
of a cell’s outcome conditional on the history of its neighbors
and itself, and the randomness of the time series from
linear analysis of

A. Inter-Cell Statistics

The joint cell statistics can be analyzed using mathemat-
ical tools operating ondensities, such as outlined in [43],
and extended to the multivariate case involving conditional
probablities. The probability density of a cell’s outcome at
time conditional on cell ’s outcome at time is formally
defined as

Pr
(5)

Similarly, the unconditional probability density is defined as

Pr
(6)
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which also can be expressed as by
application of Bayes’ rule.

Clearly, the outcome of cell at time only depends
on those of cells and at time as determined by (4),
or equivalently

(7)

which after applying rules of modulo arithmetic can be refor-
mulated as

(8)

and thus

(9)

In particular, if element has uniform probability density
then so does element and furthermore the

conditional probability densities of both on the previous
values of and are uniform as well

(10)

In other words, a uniform density (not necessarily random)
at the input implies a uniform density at the output

unconditionalon previous values of the input as well as
the output itself. This establishes, in astatistical sense, that
“source” is “random,” and independent of the input
(Dynamical aspects of randomness are the subject of next
section.)

The same result can also be obtained directly by applying
the Frobenius–Perron density operator [43] of transformation
(7) to the conditional probabilities, for which uniform densities
are a stationary solution. Property (10) is then easily extended
to the general case of Because of causality, already

for or for by
construction. The other combinations of and are
obtained by induction on the markov chain that characterizes
the cascade of cells over time, by repeated application of the
Frobenius–Perron operator. As said, a cell’s outcome depends
directly on the outcomes of its immediate predecessor and
itself, and so the markov property is a valid assumption. This
induction, across the chain and over time, then establishes the
proof of the following Theorem:

Theorem 1: The vector sequence
obtained from a cascade of modulators according to

(4) with initial conditions and boundary
conditions drawn from a uniform random distribution,
i.e.: follows
a uniform random distribution with mutually statistically inde-
pendent components, i.e.:

where either or
The theorem states that when a uniform random input is

supplied to the first element in a chain of MASH cells, all
cells in the chain also produce uniform random outputs, which
are statistically uncorrelated not only with the supplied input,

but also across different cells and over time. In other words,
a single random supply generates an array of random sources,
with the desirable property of spatial and temporal statistical
independence across all channels.

Of course, a system generating white noise from white noise
at the input defeats the purpose of a randomgenerator. The
following observation relaxes the requirement of a random
input to the first stage. Let be an arbitrary probability
density distribution, feeding into cell Then the distribution

is determined by the following recursive integral equation:

(11)

where Clearly, a valid steady-state
solution of the recursion is It is easy
to show that this is the only solution of the linear integral
equation (the asymptotic solution reached for in case

is strictly positive over the entire interval.
Thus, for any strictly positive, continuous-density distribu-

tion at the input, the first cell in the cascade is already
“random” with a uniform probability density 1/2. Furthermore,
the first cell’s outcome is then independent of the input as
in the case of a random input, from (9):

The only effects of nonrandomness in the input on
the statistics of the other are sequential correlations in

Subsequent channels are random, uncorrelated, and
independent as under the conditions of Theorem 1. This is
summarized in the following corollary.

Corollary 1: The vector sequence
obtained from a cascade of modulators according to

(4) with initial conditions and boundary
conditions drawn from an everywhere
strictly positive but otherwise arbitrary density distribution

follows a uniform random distribution with mutually
statistically independent components except for i.e.:

where either
or excluding the singular case and

An example of a distribution which violates this condi-
tion is a DC zero input, which clearly produces
statistical anomalies in the outputs especially if the
initial conditions are zero as well. Such artifacts are not
of much concern in analog implementations where zero-valued
regions in probability distributions are excluded because of
noise and parameter fluctuations.

B. Dynamics of Chain and Ring Topologies

Clearly, a purely statistical analysis of a purely deterministic
system cannot capture all effects which distinguish a “good”
random generator from a lousy one. The emphasis in the pre-
vious section was on statistical independence across channels
and over time. Next we study the dynamics of the channel
outputs, as determined by by the topology of the cascade of
cells.
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Equation (4) forms a dynamical system of which the noise-
shaping properties can be studied in closed form using standard
linear analysis techniques. The analysis here generalizes pre-
vious results on quantization noise in a cascade of MASH
delta–sigma modulators [33] mainly in two ways: an arbitrary
input presented to a chain of cells, and a closed ring of cells.

Lemma 2 allows rendering of (4) and (7) into an equivalent
linear form, illustrated in Fig. 2. To further simplify analysis,
the unit offset term shown in Fig. 2(c) is eliminated by the
substitution of variables in (7)

(12)

yielding a set of homogeneous linear equations

(13)

transformed into the -domain as

(14)

Each cell is thus represented by an accumulator with transfer
function

1) Linear Chain: For a chain topology, the output of cell
is determined by

(15)

which, transformed back in the time-domain, can be expressed
in terms of the input sequence and initial conditions

as

(16)

where denoting binomial coefficients.
An important observation here is that the series (16) diverges

for and more strongly so for larger: tends
either to or depending on the particular input
sequence The effect of the folding nonlinearity
in (12) on (16) produces an output , highly sensitive to
initial conditions. This might seem to indicate the presence of
chaos, although this is not the case since the chain topology
has a zero Lyapunov exponent (all poles are located at
or

To further quantify the effect, analytical partial derivatives
of to initial and boundary values can be evaluated
directly from (16). Let denote the sensitivity of to

defined as the absolute value of the partial derivative.
Note that any small change in corresponds to an identical
change in under transformation (12) except where
since the derivative of is unity everywhere but at its
discontinuities. Thus

(17)

is valid where and or
As expected, the sensitivity of the channel output to
previous outputs and distant outputs increases
strongly with time and with distance

A second important observation is that because all binomial
coefficients are integers, acontinuouslyuniform distribution of

requires that at least one of the terms or in
(16) be an irrational number. When this condition is met (by
making at least one or irrational within the
range), it can be shown (using similar methods as employed in
[33]) that the output modulation sequence is uniformely
distributed and uncorrelated with the input

2) Closed Ring:A closed ring topology with modulator
cells can be considered as a special case of a linear chain where

In principle, since the above analysis for the chain
topology does not assume any structure for (other than
it be contained in the modulation range interval), the above
conclusions apply here as well. However, the modulation
dynamics for a ring topology is entirely different by nature
of the feedback. Closing the loop implies

(18)

for any cell The complex eigenvalues in the -domain,
satisfying are given by

(19)

and the eigenvectors, satisfying are
correspondingly

(20)

The general solution in the time-domain is then given by

(21)

where the complex constants are expressed in terms of the
initial conditions as

(22)

The dominant dominant eigenvalue is and the
series diverges rapidly if at least one of the is nonzero:

as The ring topology has clearly
a strict positive Lyapunov exponent, and therefore exhibits
“deterministic chaos” according to the standard definition. The
sensitivity to the initial values is

(23)
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Notice that for any there is a for which for
all and thus any channel in a ring is more sensitive
to previous and distant channels, on the long term, than any
channel in a chain of arbitrary length.

As long as at least one real or imaginary components of
is irrational, so is the sequence regardless of the

initial values (provided one of them is nonzero), and
the modulation output is uniformly distributed. Such is the
case for and There is, however, one artifact
that potentially terminates the random output under certain
circumstances. This artifact exists only for even values of

and is due to the presence of a zero eigenvalue for
The corresponding “terminator” eigenvector is

real with constant amplitude, alternating sign from one cell
to the next. If at any time the state of the ring modulator

reduces to any scaled version of this eigenvector or
any of the equivalent vectors on the grid invariant to the

transformation, then the modulator halts in the zero state,
starting in the next cycle and , for all

The chance of this artifact actually occuring is virtually
zero in an analog implementation, but is significant in a digital
implementation with fixed-point arithmetic.

C. Analog versus Digital

Generating truly random numbers from a deterministic,
infinitely precise, limited resolution system such as a digital
computer is clearly utopia. Generating “pseudo-random” se-
quences with random-like properties has been a challenge to
computer scientists that involves intricate mathematics such
as number theory and the like [27]. The random properties of
analog counterparts of these random generators are drastically
different, owing to the infinite resolution of the analog rep-
resentation, and the intrinsic randomness of additive noise in
the physical implementation.

All of the complications that have arisen in the above
study of the dynamics of coupled modulators are due to
artifacts specific to discrete (digital) rather than continuous
(analog) systems. For instance, in analog implementations,
the realization of rational numbers has zero probability, and
physical noise washes away any of the effects of close
proximity to a rational number (analogous, say, to the role of
noise in flipping or flopping a metastable flipflop). On the other
hand,anynumber represented in a digital computer is rational,
and “random” sequences are guaranteed to repeat themselves,
with a period which in thebest case equals the number of
different discrete states (minus one) [28]. Similarly, the artifact
of the zero eigenvalue in a ring topology with even number
of cells affects digital implementations only. In analog, the
chance of precisely hitting a member of the family of the
“terminator” eigenvector is again zero, and even if one gets
close enough, the devastating effect of the aftermath is washed
away quickly by virtue of the additive physical noise injected
into the system.

The role of additive noise and dithering in delta–sigma
modulation has been studied extensively, e.g. [35], [36]. For
the ring and chain topologies of MASH modulators studied
above, the effect of additive noise in an analog implementation

can be quantified as follows. Let represent the root-mean-
square noise contributed physically to the variable at time

Then the long-term, cumulative effect onto variable at
time in terms of the root-mean-square deviation from
the noiseless case, can be estimated from the sensitivities
as

(24)

increasing sharply with and especially so for the ring
topology. Even under arbitrary low noise conditions, the
deviation from the nominal dynamics in as studied above
grows rapidly, and renders the output unpredictable after a
number of cycles as the cumulative noise amplitude
outgrows the nominal signal level

Notice that the compressive nonlinearity folds any
excess signal back into the range. Since quickly
goes to infinity, the folding effectivelyshapesthe amplified
noise into a uniform distribution regardless of the
distribution of the generating noise sources. This type of
noise-shaping is in addition to the deterministic noise-shaping
of quantization noise in the delta–sigma modulators, and adds
a truly random component to the output, absent in digital
implementations. In analog implementations, noise shaping
of this type avoids problems that arise in systems which
directly amplify the noise contributed by physical sources, i.e.,
a nonuniform amplitude distribution affected by noise
and temperature variations, and correlation across channels
due to parasitic coupling. By nature of the properties studied
above, an analog array of MASH modulators shapes the noise,
contributed by the quantizers and by physical sources, into
mutually independent, uniformly distributed, random channels.

IV. I MPLEMENTATION

The array of MASH modulators can be implemented in a
variety of VLSI technologies, digital and analog. The archi-
tecture using modulo arithmetic depicted in Fig. 2(b) is most
suitable for digital implementations, using carry-free adders
and registers. Analog implementations are more served by the
structure of Fig. 2(a), since the nonlinearity is readily
implemented using a high-gain comparator and differencing
circuitry.

The discussion in the foregoing section has made the
advantages of an analog implementation clear. In addition,
analog VLSI implementation offers potentially higher inte-
gration density and higher energy efficiency than equivalent
digital VLSI implementations. Unlike more convential analog
designs, where high precision and high noise rejection are
primary design constraints, the circuits can be implemented
with minimum-size, noisy and imprecise components biased
at lower currents. Effects of component noise and mismatches
in the implementation are discussed below.

A. Architecture

The analog VLSI implementation presented here targets
applications of on-line random generation integrated in VLSI



246 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 3, MARCH 1999

(a)

(b)

Fig. 4. Switched-capacitor MASH modulator cell. (a) Simplified circuit
diagram. (b) Timing diagram.

systems for information and signal processing, where a steady
stream of random variables are required locally, in parallel,
and in analog format. We have adopted an implementation
style using low-power, high-density switched-capacitor cir-
cuits, producing a voltage output format Compact
alternative realizations using current-mode technology, such
as used in [30], can be derived as well.

The switched-capacitor architecture implementing the
MASH cell in Fig. 2(a) is shown in Fig. 4(a), and the
corresponding signal timing diagram is given in Fig. 4(b).
The state corresponding to in Fig. 2(a), is
stored across capacitor To save power and silicon real
estate, the amplifier serves the dual purpose of accumulator

and quantizer controlled by the COMP signal.
When COMP is active (high), amplifier compares with
zero, and presents the result (sign of to the accumulator
input through the inverting of one-bit D/A converterWhen
COMP is inactive (low), is presented to the output
OUT. The accumulator functions as a standard switched-
capacitor noninverting integrator [39], where in the sampling
phase the capacitor is precharged to the input, and in the
accumulate phase this charge is transferred onto capacitor
This operation is controlled with signals ACC, and
repeated twice as shown in Fig. 4(b) (phasesa–b, and c–d).
The input to the accumulator is controlled by the SEL signal,
which first selects the output from the preceding stage
presented to IN, and then the output from the comparator. The
four-phase operation is summarized as follows:

1) sample input from previous stage;
2) accumulate;
3) compare with zero and sample inverted result;
4) accumulate, yielding

Functionally, the first accumulate produces
and the second accumulate subtracts the sign of the first. The
net operation thus yields as desired.

Fig. 5. CMOS switched-capacitor circuit diagram of MASH modulator cell.

B. CMOS Implementation

The transistor-level circuit diagram of the MASH cell is
shown in Fig. 5. For low-power operation and compatibility
with digital interface circuitry, the circuit uses a single supply

set to 5 V for the experiments. The signal ground level is
set to V, and the signal range is V as determined
by the D/A levels, V and V, symmetric
around Thus

(25)

where V.
The amplifier is implemented as a single, noncascoded

pseudo- MOS inverter M1–M2. The relatively low gain of
this design is adequate for the purpose of a random gener-
ator, where linearity and gain errors are less important than
power dissipation and size. The virtual ground voltage of the
amplifier, used for the precharge in the sampling phase of the
accumulator, is obtained from circuit M3–M4, of which the

bias is generated from The reason for not precharging
directly from the unity gain connected amplifier is because
the accumulator output is needed simultaneously to precharge
the next cell, occupying the amplifier. This introduces
noise in the accumulator, which otherwise would have been
cancelled by a correlated double-sampling technique. Finally,
the capacitances and are 0.2 pF in 2 m technology,
enough to provide adequate matching, and to avoid excessive
switch-injection and clock-feedthrough noise contributed by
the switches and

The layout of the cell, measuring in a double-
metal, double-poly CMOS process, is shown in Fig. 6. The
second poly is used for capacitors only, which can be replaced
by MOS gate oxide capacitors. In 0.25m CMOS technology,
this layout supports the integration of over half a million cells
on a single 1 cm chip, although this obviously excludes any
circuitry actually using the array of random numbers.

C. Sources of Imprecision and Noise

The scaling of the technology brings up issues of circuit
noise and mismatch, and their effect on performance. Sources
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Fig. 6. Layout of switched-capacitor MASH modulator cell. Dimensions are
100� � 120� in MOSIS scalable CMOS technology.

of noise are mainly thermal noise as contributed by the
capacitances and and noise of the amplifier
M1–M2 and the virtual ground circuit M3–M4. Both scale
inversely with Noise is an issue mostly for applications
requiring reproducible “random” sequences for given initial
state conditions, in particular for analog encryption and secure
communications. However, increased noise is desirable (or at
least not undesirable) when quality of randomness is the only
concern.

The most significant imprecisions in the implementation are
the finite gain of the amplifier and the mismatch between the
two capacitors, which affect the gain and linearity of the cell
transfer function. The results of Theorem 1 and Corollary
1 hold only for integer values of the gain in (1), and a
small deviation from introduces slight nonuniformities
in the conditional probabilities and in (9),
even though the unconditional probabilities are mostly
unaffected. The effect of mismatch on statistical dependence
is thus constrained locally in time and space, and can be
virtually eliminated by “oversampling” in time or space. The
effect of gain nonlinearity is qualitatively similar. Effects of
small gain and nonlinearity errors on the dynamics of the
modulator chain and ring topologies are of minimal impact.
The effect of gain variations on the dynamics can be formally
analyzed from sensitivities (17) and (17) after inclusion of the
appropriate terms.

Switch-injection noise and clock-feedthrough in the
switches and transistor mismatches contribute an offset error

which does not affect performance. As a matter of fact, any
of the properties studied above still apply when an arbitrary

Fig. 7. Micrograph of the 64(+1)-channel VLSI parallel random analog
vector generator, including an8 � 8 array of MASH modulators plus one
extra modulator. Dimensions are 2.22 mm� 2.25 mm in 2�m CMOS.

offset is included in (1), under a transformation of variables
similar to (12).

V. EXPERIMENTAL RESULTS

Fig. 7 shows a micrograph of the tiny (2.22 mm 2.25
mm) 2 m CMOS chip prototyped through MOSIS, which
integrates a 2-D array of 64 MASH cells configured as
shown in Fig. 3, plus one extra MASH cell and additional
test circuitry. Of the 64 channels, two can be randomly
accessed at the same time by means of two independent sets
of horizontal and vertical address-decoded multiplexers. This
allows characterization of any pair of channels simultane-
ously.

All experimental results reported in this paper were obtained
from this chip. Experiments were performed on chain and
ring topologies with 64 and 65 cells, using the array and the
extra modulator. Although the theory predicts differences in
dynamical properties for rings with even and odd number of
cells these effects are unobservable in the data obtained for
64 and 65 cells. The data shown is limited to the case
and the complete data set is available on request.

Iterative Map: The measured iterative map and transfer
characteristic of a single MASH modulator cell, implementing
(4), is shown in Fig. 8, for a spectrum of input and output
voltages in the range of the interval. The combined
gain errors are in the order of 5%, and their effect on the
random statistics, as anticipated above, is evaluated next.
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Fig. 8. Measured Iterative map of a single MASH modulator cell.

Fig. 9. OscilloscopeX–Y plot showing outputs from two neighboring
channels in the 65-channel ring.

Fig. 10. Measured time-space correlogram. Scatter plots of data from the
65-cell ring, across five neighboring cells and five consecutive time delays.

Statistics: The hypothesis of statistical independence
across channels and over time, theorized in Section III-A, was
tested experimentally, illustrated in Fig. 9 for two concurrent
neighboring outputs, and shown in further detail in Fig. 10,

Fig. 11. Measured transient dynamics of the 65-cell chain, from zero-level
(Vm) initial conditions, and for zero-level(Vm) input to the first cell.

recorded over several consecutive channels and time delays
on the 65-cell ring. The graphs show versus
producing a scatter plot corresponding to the joint probability
density which ideally should be uniform. The only perceptable
effects of any (nontrivial) correlations across outputs appear to
be between consecutive values in two neighboring channels,

versus and As anticipated in Section
IV-C, the linear gaps in the otherwise uniform distribution in
the - and - graphs are due to a
value of the gain less than one, which cause certain values
in the interval to be inaccessible to from a
given or initial value. If this nonuniformity is
a serious issue, it can be reduced by increasing the open-loop
gain of the amplifier and compensate for various mismatches.
Alternatively, a simpler remedy isoversamplingeither in space
or in time, e.g., skipping every other sample in the sequence or
every other cell in the cascade. Notice that even without such
methods, the quality of random vector generation obtained
“as is” should be more than adequate for most purposes,
especially given that conventional designs based on congruent
linear recursions or other iterative maps are by construction
entirely deterministic over time (the - scatter
plot condenses to a solid curve).

For a 65-cell chain topology with constant zero-level input
to the first cell, the obtained results were qualitatively similar,
except for the first few channels which showed systematic
correlations, due to transient effects studied next.

Dynamics: The effect of chain and ring topologies on the
transient and steady modulation dynamics, recorded across the
entire 65-cell cascade over 80 time steps, is illustrated in Figs.
11 and 12. In both cases, transient effects due to near-zero
initial conditions for all cells, are clearly visible for the first
few cycles. For the chain topology in Fig. 11, the first few

cells display a tendency to limit cycle oscillations, due to
the degenerate effect of a near-zero DC input to the first cell as
discussed in Sections III-A and IV-C. Power density spectral
analysis of experimental data over a 1024-point rectangular
time window, shown in Fig. 13, reveals that effects of limit
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Fig. 12. Measured transient dynamics of the 65-cell ring, from zero-level
(Vm) initial conditions.

(a) (b)

(c) (d)

Fig. 13. Discrete Fourier power density spectra of recorded cell sequences.
(a) First cell in the 65-cell chain, with zero-level(Vm) input. (b) Second
Cell. (c) Fourth Cell. (d) 65-cell ring.

cycle oscillations or other colored spectral features are limited
to no more than the first three stages of the chain, and are
absent in the ring.

System-Level Issues:The operation of the chip has been
verified over a range of speeds from 2 Ksamples/s to 50
Ksamples/s per channel. The maximum of 50 Ksamples/s per
channel obtained is affected by external capacitive loading
of the (multiplexed) output which has not been buffered.
Measurements of supply currents yield power dissipation
levels ranging from 16 W to 245 W per cell, corresponding
to 6 nJ of energy dissipated per sample. Extrapolation of these
results are technology dependent; scaling of the technology
(from 2 m to deep submicron feature sizes) would allow
to further reduce energy consumption and increase available
bandwidth at least proportionally. Increased circuit noise levels
caused by the downscaling of the capacitors are a concern
only to the extent to which reproducibility of the modulation
output sequences is more important than their randomness

properties. In any case, by the folding nature of the modulation
as discussed in Section III, the noise at the output is shaped into
a uniform random distribution independent of the structure of
the injected circuit noise.

VI. CONCLUSIONS

Delta–sigma modulation and modulo arithmetic have been
combined in a cellular architecture for parallel analog random
vector generation, with statistical properties that are unique to
the functional form of interactions across cells and not found
in arrays of separate analog random generators: statistical
independence over time and across channels. We have formally
analyzed these properties for two architectures (chain and
ring topologies), and experimentally verified the results on a
65-channel VLSI prototype.

As in the linear congruential map, the modulo operation
produces a uniform random amplitude distrubution for each
of the cell state variables. However, the contribution by
the neighboring cells to the modulo sum scrambles the de-
pendency of the cell’s state on its previous value, and we
have shown that this produces a uniform random sequence
void of sequential correlations so characteristic of the linear
congruential generator and other iterative chaotic maps. We
have also shown that the modulo sum nature of the coupling
between cells avoids any correlations between cells across
the array. The randomizing effect of this strong nonlinear
coupling is fundamentally different from mode-locking and
synchronization phenomena that arise in arrays of weakly
coupled oscillators.

The functional equivalence between linear congruent mod-
ulation and delta–sigma modulation offers elegant circuit im-
plementations both in analog and digital VLSI technologies.
Owing to noise-shaping properties similar to quantization
noise in delta–sigma modulation, the amplification and mod-
ulation of physical noise present in an analog implementation
generates truly random, nonperiodic sequences with statis-
tics that are guaranteed uniform, void of some anomalies
that potentially occur when using limited-resolution, infinite-
precision arithmetic as in a digital implementation. The amount
of injected physical noise clearly determines the extent in
time to which the random sequences are reproducible from
identical initial conditions. The tradeoff between randomness
and reproducibility is an important issue for applications of
analog encryption. We have performed a sensitivity study
based on an analytical model of the dynamics, quantifying
uncertainty in the sequence as a function of time and distance
from given initial or boundary conditions.

Finally, results from a fabricated 64(+1)-channel prototype
in 2- m CMOS technology confirm the theoretical results, and
indicate that effects of component mismatches and other circuit
imperfections are not detrimental to the statistics and dynamics
of the modulation sequences. The implementation architecture
is equivalent to a MASH cascade of delta–sigma modulators,
of which the noise-shaping properties inspired much of this
work. While the particular switched-capacitor design used to
implement the MASH modulator serves for demonstration
purposes only, the cell layout supports the integration of
over half a million random generators on a 1 cmdie in



250 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 3, MARCH 1999

0.2- m CMOS technology. Besides the excellent statistical
properties, the small size and low energy consumption of the
random cell make it particularly well suited for large-scale
integrated applications of parallel distributed analog signal and
information processing, where an on-line supply of random
values is embedded locally with each processing element.
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