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Abstract. A large-margin learning machine for sparse probability re-
gression is presented. Unlike support vector machines and other forms
of kernel machines, nonlinear features are obtained by transforming la-
bels into higher-dimensional label space rather than transforming data
vectors into feature space. Linear multi-class logistic regression with par-
titioned classes of labels yields a nonlinear classifier in the original labels.
With a linear kernel in data space, storage and run-time requirements are
reduced from the number of support vectors to the number of partitioned
labels. Using the partitioning property of KL-divergence in label space,
an iterative alignment procedure produces sparse training coefficients.
Experiments show that label partitioning is effective in modeling non-
linear decision boundaries with same, and in some cases superior, gen-
eralization performance to Support Vector Machines with significantly
reduced memory and run-time requirements.

1 Introduction

Support Vector Machines [1,2] derive their approximation power by mapping
the training data vectors into a higher dimensional feature space, where a linear
maximal margin separating hyper-plane can be found to efficiently discriminate
between respective classes. Computation in this higher dimensional feature space
is made feasible with the aid of reproducing Hilbert space kernels, which are
equivalent to computing inner-products in these higher dimensions. Even though
SVMs have demonstrated state-of-art classification performance, some challenges
remain:

1. The efficiency of real-time classification for SVMs depends on the degree of
sparsity as measured by the number of support vectors required for a given
task. In most practical scenarios there exists significant overlap between class
distributions which results in large numbers of support vectors for classifica-
tion. For a given Bayes error rate, the number of error support vectors scales
directly with the number of training points, and significantly outgrows the
number of margin support vectors for very large datasets.



2. The complexity of SVM training scales with the square of the number of
support vectors, and becomes prohibitively slow for huge datasets with sig-
nificant class overlaps.

3. The choice of kernel is heuristic, and is governed by prior knowledge about
the problem which usually is not available.

The first two problems can be attributed to the need to represent error vec-
tors as support vectors in the dual formulation, assuming a non-linear kernel.
It has been shown [3] that the same classification boundary can be obtained
by optimizing a primal reformulation of the SVM cost function, leading to a
reduction of the number of effective support vectors, although sparsity is not
guaranteed and depends on the kernel used. Reduced Set Methods [4] project
the decision surface onto a sparser kernel representation formed by a number
of basis functions that are chosen based on an unconstrained non-convex opti-
mization procedure. Relevance Vector Machines (RVM) [5] offer an alternative
to obtaining sparse kernel expansions in a Bayesian setting, and have demon-
strated same or better generalization performance with fewer ‘relevance’ vectors,
although practical implementation has been limited to relatively small datasets.

We introduce the Partitioned Label Machine (PLM) to improve on sparsity
of representation and generalization performance in large-margin kernel classi-
fication and probability regression. PLMs map the labels, rather than the data
vectors, into a higher dimensional space. Through partitioning of the labels, the
resulting partitioned classes can be linearly classified. Linear multi-class prob-
ability regression can then be used to map decision boundaries and combine
hypotheses to form nonlinear classification decisions. The linear form gives rise
to a sparse representation in the primal formulation, with an expansion that
scales not with the number of training data, but with the number of label par-
titions. We show that label partitioning implies a nonlinear map similar to that
implied in data space by a Mercer kernel in the SVM dual formulation. The
PLM method is very general and easily extends from two-class to multi-class
problems.

Committee machines [6], voting machines and mixture of experts [7 9] are
based on similar lines of combining simple decision surfaces by voting/mixing.
Linear weighting of simple hypotheses cannot result in a more complex hypoth-
esis, and we show how PLMs model nonlinear decision surfaces even though the
underlying classification functions are linear. SVMs are not combined by linear
mixing; rather, partitioned subclasses combine nonlinearly through the com-
petitive and self-normalizing functional form of multinomial logistic regression,
applied once to all partitioned classes. Since the classification machine outputs
class probabilities, partitioning of the labels can be accomplished in an iterative
scheme similar to expectation maximization.

Section 2 describes the probability model used for PLM and provides its jus-
tification based on generalization performance. Section 3 formulates the problem
in terms of KL-divergence and logistic kernel regression, and compares proper-
ties of label partitioning with those of Mercer kernels. Section 4 summarizes the
experiments performed on PLMs and section 5 provides concluding remarks.



2 Model Selection

Partitioned Label Machines (PLMs) map an input feature vector x € R? onto
one of the respective S label classes based on a compound selection criterion
derived from partitioning of the label classes. The class decisions are based on
choosing the class i € 1..S with the highest probability measure P;(x):

K
Pi(x) = Pr(ilx) = Z Pij(x) (1)

obtained by pooling probability mass P;;(x) over K corresponding partitioned
sub-classes j:

exp(wij.x + b”)
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A special case of interest is that of binary classification with decision function

P;j(x) =Pr(i, j|x) =

(2)

K
y=0(Pi(x) = 0.5) = 0> Py;(x) — 0.5) (3)
J
where 6(-) is the Heaviside function mapping onto two respective classes {1,0}
and the function P;;(x) € H; is given by

exp(wli.x + bh)
Zq exp(Woq.X + bog) + Zq exp(wig.x + big)’

Prj(x) = (4)
The P-dimension [10] dimp of the class of functions H, is bounded above by
d + 1. This can be easily verified by observing that P;;(x) forms a soft-max of
K linear decision surfaces. Using results directly from [11] the scale sensitive
dimension fat,, of the class of H of functions P (x) in (3) is given by

c 2
futr(8) < <" 108(1/5) (5)

for some universal constant ¢ and margin 8. This shows that the upper-bound
on complexity of decision space H is polynomial in the number of sub-classes
K, suggesting poor generalization for large values of K. However, appropriately
maximizing the margin 3 allows to control the complexity of the hypothesis
class and hence the generalization ability. Equation (5) also suggests to adjust
the margin § with with the number of partitions K as to maintain a fixed upper-
bound on the complexity of H.

3 Label Partitioning and Re-Estimation

For training the learning machine, we assume access to a training sequence
x[n] € RY with labels (class memberships) y[n] € R®, where n denotes the



data index, d the dimension of the input vectors, and S the number of classes.
Continuous (soft) labels could be assigned rather than binary indicator labels,
to signify uncertainty in the trainin% data over the classes. Like probabilities,
label assignments are normalized: >, | y;[n] = 1,y;[n] > 0 where S is the total
number of classes.

Training could be formulated as minimization of the regularized empiri-
cal KL-divergence between the probabilities estimated by the learning machine
P;[n] = Pr(i|x[n]), and the label vectors y;[n]:

5 K N S
H(W):%ZZ|wij|2+CZZyi[n]log n]
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where C' > 0 is a regularization constant, and W = |, j (Wij,bij) denotes the set
of hyperplane parameters of the model.

The cost function (6) is non-convex for the probability model given by (2).
To arrive at a convex optimization problem, we derive an auxiliary function
upper-bounding the decrease in cost function 6H(W, W*) = H(W*) — H(W),
where W and W* denote the current and the previous estimates of parameters.
0H (W, W*) can be written as

OH(W, W*) =62(W,W*) + CSF(W, W) (7)
with
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We use the celebrated log-sum inequality to bound (9):
Lemma: For a sequence of non-negative numbers {a;}"; and {b;}},, and
fora=>""  a;and b= >"" , b;, the following inequality holds

Pf} [n] =

Pij[n] =

n
Zai log% > alog% (12)

with equality iff a;/b; = a/b for all i. The proof of lemma (12) is simple and is
obtained by application of Jensen’s inequality to the convex function ¢log(¢).



Applying (12) to (9) the following expectation-maximization (EM) auxiliary
function is obtained

AW, W*) = ZIWUIHOZZ% ] log m (13)

where
1l = ] L [n] 14
with P*[n] = >, Pjj[n]. It is easy to verify that A(W, W*) > 0. Minimizing

the auxiliary function (13) is therefore equivalent to decreasing an upper bound
on the cost function (6), and by subsequent iteration of computing the new
labels based on previous estimates the procedure converges at least to a local
minimum. The upper-bound A(W, W*) bears resemblance to conditional EM
bounds in [12] within a regularization framework. One can directly see from the
condition for equality in the above log-sum inequality that the solution converges
to the global minimum if the following condition is satisfied:

(15)

This condition, unfortunately cannot be strictly ensured by the probability mea-
sures P;(x) and therefore has to be satisfied to close approximation. The initial-
ization sub-labels y;; should therefore be chosen such that they can be easily
classified using a large margin classifier which can be obtained by using disjoint
partitioning or clustering methods like Gaussian mixture modeling.

The principle of mapping the a low-dimension label vector into higher dimen-
sional space yields advantages similar to the ‘kernel trick’, in this case however
one can work in the higher dimensional space directly using a linear kernel. Par-
titioning the classes into sub-classes yields easily separable classes which can
then efficiently combined using multi-class probabilistic regression techniques,
reviewed next.

3.1 Logistic Probability Regression

Optimization of the lower-bound in (13) amounts to regressing probabilities over
S x K (partitioned) classes. Estimation of probabilities P;;[n], for partitions j
of class i, from training data x[n] and partitioned labels y;;[n], is obtained using
a regularized form of logistic probability regression. The model (2) assumes a
multinomial logistic form

S K
Py[n] = exp(fi; (x[n]))/ D > exp(for(x[n])- (16)
s k



Primal Formulation:

In the primal formulation, the discriminant functions f;;(x) are expressed in
the primal variables defining the coordinates of the hyperplane in feature space.
In particular, for a linear kernel,

fij(x) = Wij.X+bij. (17)

The objective function of logistic regression expresses regularized divergence (13)
of the logistic model (16) in the form [13, 14]

N
Hy = 3wl + OIS wilnl i (xlnl) + Tog(Y e+ (1)

.7 i,j s,k

Use of a linear kernel enables use of primal gradient related methods that
directly optimizes (13). The advantage of the primal formulation with linear
kernel is that the number of variables is fixed by the vector dimension d, and
not by the number of training vectors IN. In PLM, this implies that the number
of terms in the expansion is proportional to the number of partitions, determined
by the complexity of the task rather than the size of the data. Partitioning of the
labels allows to use a linear kernel and yet model a nonlinear decision surface.
Still, it may be advantageous to use a nonlinear Mercer kernel, or to resort to
the dual representation otherwise and gain in terms of computational efficiency.

Dual Formulation:

Dual formulation of (18) yields a regularized kernel-based form of logistic re-
gression [15, 14]. As with SVMs, dot products in the expression for f;;(x) in (16)
convert into kernel expansions over the training data x[m] by transforming the
data to feature space [4]

fij(x) = Z A K (x[m], x) + byj. (19)

The parameters A]} in (19) are determined by minimizing a dual formulation of
the objective function (18) obtained through the Legendre transformation, which
for logistic regression takes the form of an entropy-based objective function [15]

=3 le DX Qun X +C D (i lm] =N /C) log (yiglm] = A5 /€] (20)

with Q. = K(x[l],x[m]), to be minimized in the dual parameters subject to
constraints

> Ar=0 (21)
S am=0 (22)
,J

Cly;;lm] = 1) < A} < Cyj;m], Vi, j. (23)
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Fig. 1. Kernel maps formed over UCI Pima-Indians database. (a) Linear Mercer kernel
Qim. (b) Label "kernel” formed by inner-product of the coefficient vectors Zi,j )\ﬁj)\?j’
after training.

Newton-Raphson based techniques can be used to solve the dual optimization
problem (20) but exhibit slow convergence on account of the non-differentiability
of the Shannon entropy factor in (20). GiniSVM [16] offers an approximate dual
procedure based on a Gini quadratic form of entropy [17] to solve (20) efficiently.
Like in soft-margin SVM classification, GiniSVM recasts the optimization prob-
lem into a quadratic programming (QP) problem, and produces a sparse kernel
expansion.

In the following we assume the use of a linear kernel, and the distinction
between primal and dual formulations becomes immaterial other than compu-
tational issues in the implementation.

3.2 Training Algorithm
The training algorithm can be summarized as follows:

1. Given the number of classes S, choose the number of sub-classes. This is
determined by the constraints imposed by memory and computational re-
sources for a specific application. Let the number of sub-classes be K. There-
fore the total memory required scales with K x S.

2. For each of the classes, partition the data vectors into disjoint K sub-classes
using vector quantization or any clustering technique. This step is crucial to
ensure that the equality (15) holds approximately.

3. Train probability regression with a linear kernel for K classes, to obtain
K x S partition vectors w;; and corresponding estimates P;;[n].

4. Re-estimate the new labels y;;[n] using (14) and retrain.



Fig.2. (a) 2-class decision surface obtained by SVM with a third order polynomial
kernel. Support vectors in this case comprise 58% of the training data. (b) Decision
surface obtained by PLM with linear kernel, and K = 2 partitions per class. Label
partition vectors comprise 4% of the training data.

In most cases two or three EM iterations are enough to obtain a good solution.
It is also demonstrated in Section 4 that this re-estimation procedure prevents
over-fitting which may occur when more sub-classes K are chosen than required
for discrimination.

3.3 Correspondence between Label-Partitioning and Mercer
Kernels

The similarity between using the partition method and using non-linear kernels
can be observed through cost function (20) re-written as

n m

=523 Q) +czzyu %) togym] - 22). (20

(%] mo i,

l\.')lr—a

The term ZM /\ij)\zg could be interpreted as an inner product in a higher-
dimensional ‘label” space ¢(A™).¢(\!). This implies that even if the data kernel
Qum is not powerful enough to model the desired non-linear decision boundaries,
the kernel formed by inner-product of the coefficient label ‘vectors’ obtained
by training augments the modeling power of PLM. Figure 1 compares the data
kernel matrix Q. for a linear kernel with the PLM label ‘kernel’ matrix formed
by the trained label coefficients Z /\i‘7 A77, using 300 training points from the
UCI Pima-Indian dataset.

Unfortunately, unlike standard kernel machines the decision surface cannot
be directly expressed in original label space. This necessitates explicit use of
inner products of coefficients in partitioned label space, which is accomplished
by means of the partition method of Section 3.



Fig. 3. (a) 2-Class decision surface formed by third order polynomial SVM with 20%
support vectors. (b) 3-Partition PLM decision surface with 4% partitioned label vectors.
Note that the solution obtained by SVM in this case is not a true large-margin solu-
tion in the original data-space, while PLM adjusts the margin locally by differentiating
between clusters.

4 Experiments and Results

The first set of experiments were performed with synthetic data generated using
a mixture of Gaussians. The aim of the first set of experiments was to vali-
date/observe the following:

1. PLM forms a decision surface similar to a full SVM solution but with much
smaller number of partition labels than support vectors.

2. The large-margin decision surface does not change appreciably if larger num-
ber of sub-classes K are chosen than required. This illustrates that PLM does
not over-fit in the scenario when more partition vectors are used than actu-
ally required. This is important because one cannot determine a priori the
number of sub-classes necessary for good generalization.

3. The PLM formulation directly extends to the multi-class case, since the
underlying probability model is multi-class (multinomial logistic).

Figures 2 illustrates the strong similarity in decision surface between PLM
and conventional SVM classification, but with significantly fewer partition vec-
tors w;; than support vectors x[m]. Figure 3 depicts an example where the SVM
formulation does not produce large margin in data-space, because the true ‘mar-
gin’ of separation varies between pairs of clusters. Label partitioning allows to
differentiate between clusters of data, and adapt the margin locally.

Figures 4 and 5 show the effect of choosing more partition vectors than actu-
ally required. One can observe in Figure 5 the effect of EM re-estimation on the
large margin partitioned hyperplane, smoothing out artifacts of over-partitioning
in Figure 4. Figure 6 shows probability contours obtained by applying the PLM
method to the multi-class case.

The second set of experiments compares the performance of SVM with PLM
on databases chosen from the UCI repository. For each of the selected datasets,
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Fig. 4. Decision surface obtained by increasing the total number of partitions before
EM re-estimation.

Fig. 5. Decision surface obtained after EM re-estimation of partitions in Figure 4.

a 10-fold cross-validation technique was used and the test errors were averaged
over all the subsets. The size of the training set used N, the test error rates (Err)
and the obtained number of support/partition vectors (#sv/#pv) are given in
Table 1, which shows that PLM exhibits same or better generalization perfor-
mance compared to binary soft-margin SVM, with improved sparsity in the
representation.

Table 1. Results on UCI data

I Database | N_[SVM (Err)[PLM (Err)[SVM (#sv)[PLM (#pv)|
Tonosphere 300 8.1% 7.2% 76 4
Pima Diabetes 650 21.6% 21.0% 284 4
Wisc Breast Cancer| 600 3.0% 3.7% 81 6
Sonar 160 7.6% 5.7% 122 12




Fig.6. (a) Probability contours formed by using PLM for a 3-class problem with 9
partitions. (b) Probability contours formed by PLM for a 5-class problem with 10 par-
titions.

5 Conclusions

We presented the Partitioned Label Machine (PLM) as a technique to obtain
sparse classification and probability regression within the framework of large
margin kernel methods and support vector machines. Advantages include:

1. PLM directly finds a decision surface subject to memory constraints imposed
on the problem, expressed in number of label partitions.

2. The method is non-parametric, because there is no choice of kernel unlike
support vector machines, and the only flexibility involves choosing the reg-
ularization constant C, and the number of sub-classes K.

3. PLMs provide comparable generalization performance in comparison with
SVMs, but with much fewer partition labels than support vectors. Gener-
alization performance of PLM is superior when the data is non-uniformly
distributed, with variable margin in data space.

4. Because the algorithm is linear in each of the sub-classes, the training algo-
rithm is fast, as only a single inner-product computation has to be performed
to calculate the margin of any data vector.

5. The run-time classification is significantly reduced and only depends on the
number of sub-classes K, which in turn can be fixed by memory constraints
pre-specified during training.

6. The technique is very general and extends directly to multi-class problems.
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