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Abstract— An auditory perception model for noise-robust
speech feature extraction is presented. The model assumes
continuous-timefiltering and rectification, amenableto real-time,
low-power analog VLSI implementation. A 3mm � 3mm CMOS
chip in 0.5��� CMOS technology implements the general form
of the model with digitally programmable filter parameters.
Experiments on the TI-DIGIT databasedemonstrate consistent
robustnessof the new featuresto noiseof various statistics,yield-
ing significant impr ovements in digit recognition accuracy over
models identically trained using Mel-scale fr equency cepstral
coefficient (MFCC) features.

I . INTRODUCTION

Despite the successof speechrecognition systemsfor
clean speechin controlled environments,their performance
degradesseverely whenthey aresubjectedto noisein natural
environments[1]. One remedyto this problem has been to
reducethe mismatchby training or retrainingthe recognition
systemundernoisyconditionsrepresentativeof theapplication
environment. Elaboratetechniquesto reducethis mismatch
have beenproposedin the literature[2], [3].

The motivation for auditory basedspectral analysis [4],
[5], [6] is to gain recognitionperformancein natural(noisy)
listening environments from the understandingof how the
human ear processesspeech.Auditory basedmodels tend
to elegant and efficient, physically basedimplementationin
analogVLSI parallelhardware[7], [8], [9].

Ratherthanattemptingto modelexact physiologicaldetail,
our goal in silicon implementationof auditory perception
for robust speechrecognitionis to focus on effective signal
processingin the human ear. A simple model abstraction
of the auditory system is proposed,that leads to efficient
implementationin analogVLSI while offering sufficient flex-
ibility in tuning recognitionperformanceby adjustingsystem
parametersin the architecture.The architecturecomprises
analog continuous-timefilters with digitally programmable
coefficients,integratedon a singleVLSI chip.

SectionII introducestheauditoryperceptionmodel,andits
architecture.Analogcircuit implementationof thefront endof
the model is describedand characterizedin SectionIII. Sec-
tion IV presentsresultsfrom speechrecognitionexperiments
usingthe model,andSectionV providesconcludingremarks,
discussionsandfuture directions.

I I . AUDITORY PERCEPTION MODEL

The key to noise robustnessin auditory perceptionis a
schemeto filter out noisewhile retainingcomponentsof the
signalcharacteristicof speech.An auditoryperceptualmodel
wasproposedin [4], that usesadaptive dynamiccompression
of spectralfeaturesasan alternative to staticnonlinear(loga-
rithmic) compressionasusedin MFCC. Significantreduction
in recognition error was observed in comparisonwith a
recognizertrainedusingMFCC features.

The proposedauditory perceptionmodel is basedon [4]
anddiffers mainly in the functional form of the compression
stage. The compressionstage of [4] is composedof five
consecutive nonlinearadaptationloops,whereeachadaptation
loop consistsof a divider and lowpassfilter.

The model comprisesfour stages:a pre-emphasisstage;
a constant-� bandpassfilterbank; a rectification stage;and
a bandpasscompressionstagewhich abstractsthe nonlinear
adaptive compressionstageof [4]. The signal flow is shown
in Figure1.

Thepre-emphasisstageis basedon theobservationthat the
humanear is insensitive to signalsof frequency lower than
50Hz. This stageis implementedby an analogsecond-order
Butterworth highpassfilter.

The 24-channelbandpassfilterbank stageis composedof
second-orderconstant-� biquadfilters asanapproximationto
the frequency responseof the humanear basilarmembrane.
The transferfunction of eachof the filters is given by:
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with center frequency
� �

, and with constantquality factor
� . Constant � implies that the filter bandwidthscaleswith
the center frequency, � �+� �(,.-0/��

, to trade resolution in
time andfrequency in a wavelet-like manner. To simulatethe
Mel/Bark scale frequency sensitivity of the human ear, the
centerfrequenciesof the filters are chosenaccordingto the
critical banddistribution [10]. The frequency responseof the
filterbankis shown in Figure2.

Full wave rectification extracts amplitude magnitudeen-
velope information in each frequency band, modeling the
responseof hair cells transductionin the human auditory
system.The rectified output is lowpassfiltered with a cutoff
frequency at 1 kHz.



Two versionsof the compressionstageare consideredin
the model, shown in Figure 1: one linear, and one with
an additional log static non-linearity prior to the bandpass
filtering. The log compressionservesa purposesimilar to that
in MFCC, providing outputsthat arelesssensitive to spectral
shapingdueto theacousticsof theenvironment(reverberation,
resonancesetc.)

Theabsenceof log compressionin thelinearversionfurther
simplifies the implementationin Figure 1 (b), by obviating
the need for the lowpass stage since it is subsumedby
the subsequentlow-frequency bandpassstage.Similarly, the
highpasspre-emphasisstagecan be eliminated given it is
subsumedby the subsequenthigh-frequency bandpassstage.

Thecritical componentfor noiserobustnessis thebandpass
filterbankin the compressionstage,implementedwith low- �
second-orderbiquadfilters. Thefilterbankoffers the function-
ality of the nonlinearadaptive compressionmodel in [4], but
simplifiesthe implementation.

The centerfrequenciesof the compressionstagefilterbank
are linearly spacedbetween10 Hz and24 Hz. This rangeof
frequenciesmatchesthefilter characteristicsobservedfrom the
adaptive compressionmodelof [4], andcorrespondsto typical
spectraof the amplitudeenvelopeof humanspeech.

The resulting model is similar to RASTA processingof
speech[6], in that it performscritical bandanalysisfollowed
by low-frequency bandpassfiltering. RASTA includes log
staticcompressionof the amplitudespectraprior to bandpass
filtering. Hence,the noise robustnessof the log-compressed
versionof thepresentmodelcanbeexpectedto becomparable
to that of RASTA. However, the linear version is easierto
implementin VLSI, andgivescomparableresultsasshown in
the experimentssectionbelow.

I I I . ANALOG VLSI IMPLEMENTATION

To illustrate the feasibility of implementingthe model in
massively parallel VLSI hardware, a general-purposeanalog
front-endchip is presented.

The 0.5132 CMOS chip contains32 programmableanalog
continuous-timefilter channels,which can be configuredin
parallel or cascadefilterbank topologies.Each channel in-
cludestwo bandpassor lowpasssecond-orderfilters, a full-
wave rectifier, and a first-order lowpassfilter. Hence it of-
fers the full functionality of the simplified linear model of
Figure 1 (b). The center frequency, bandwidthand gain of
all filters areindividually digitally programmable.As in [11],
Level-crossingevent detectionis also provided to implement
otherauditoryfront-endmodels,e.g., [5].

Advantagesof the analog implementationinclude high
integrationdensityandlow power consumptionin comparison
with digital implementation,and the continuous-timesignal
representationwhich avoids the need to sample and de-
alias the speechsignal. Continuous-timeanalog filters are
conveniently implementedusing transconductanceamplifiers
and capacitors,and achieve higher energetic efficiency than
switched-capacitorfilters which requireexcessbandwidthand
thushigherpower in the amplifiers.
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Fig. 1. Signal flow of logarithmic (a) and simplified linear (b) auditory
perceptionmodel

A fully differential signal representationis adoptedin the
implementation,carryingthesignalalongwith its complement
throughoutall stagesof thearchitecture.While thefully differ-
entialsignalformatimpliesa doublingof circuit complexity in
theimplementation,it offersseveraladvantagesin maintaining
high precision over single-endedimplementation:doubling
of the signal-to-noiseratio (SNR); high immunity to power
supply noise; and elimination of all even-order distortion
products(harmonics).

A second-orderOTA-C (operationaltransconductanceam-
plifier and capacitor) biquad filter topology is shown in
Figure 3. It serves both as bandpassand lowpassfilter, by
selecting either of two outputs 90:<; or 90=>; . The transfer
function of the bandpassfilter is given by
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where �0L , � � , �NM and �NO are individually programmable
OTA transconductancevalues.The variabletransconductance
is obtainedthrough current scaling techniques,as described
in [12]. Capacitors P L , P � are integrated on chip, with
digitally selectablecapacitancevalues.The filter parameters
in (1) are determinedby the programmedtransconductance
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Fig. 2. Frequency responseof the constant-o bandpassfilterbank

andcapacitancevaluesthroughthe relations
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Fig. 3. Digitally programmable,constant-o OTA-C bandpassfilter design

The differential signal representationprovides for elegant
implementationof the full-wave rectifier, usinga singlecom-
paratoranda cross-barswitch thateitherpassesor invertsthe
polarity of the differentialsignal.

Althoughnot implementedon the presentchip, logarithmic
compressionin the model variant of Figure 1 (a) can be
accomplishedby linear OTA voltage-to-currentconversion,
followed by logarithmic current-to-voltage conversion on a
diode, or a diode connectedbipolar junction transistor or
subthresholdMOS transistor.

The photomicrographof the fabricatedfront-endprocessor
is shown in Figure 4. The chip measures3mm p 3mm in
0.5 1 m CMOS technology. Table I summarizesthe specifi-
cation and measuredperformancefigures of a single OTA.
The frequency responseof second-orderbandpassfilters pro-
grammedat differentcenterfrequenciesis shown in Figure5.

Fig. 4. Photomicrographof programmableandreconfigurableOTA-C array.

Furtherdetailson circuits, measurementsandcharacteriza-
tion arepresentedin [12].

TABLE I

MEASURED OTA CHARACTERISTICS

ParameterSpecification Measured

Max qsr 1.6 t A/V
Min qsr 0.78nA/V

Programmingratio 1/2048
Input offset voltage 20 mV

Max dynamicinput range u 1.2 V
Commonmodeinput voltagerange 0.5-3 V

Commonmodeoutputvoltagerange 1.0-4.0V
Commonmoderejectionratio 40 dB

Silicon area 0.014mmv
Power supply 5 V

Power consumption 12 t W

IV. RECOGNITION EXPERIMENTS WITH AUDITORY

PERCEPTION MODEL

To comparethe recognitionperformanceof the proposed
auditory perceptionmodel with that obtainedusing MFCC
features, we chose as benchmark the standardTI-DIGIT
isolateddigit recognitiondataset,with a vocabulary sizeof 11
(zeroto nineplus‘O’). During recognition,theacousticsignal
from the TI-DIGIT was subjectedto additive noisefrom the
NOISEX database,describedfurther below.

Parametersof the simulatedauditorymodelareasfollows.
Thequality factorof the secondstagebandpassfilters is � �
)
, andthatof thecompressionstage� �xwy${z

. Without lossof
generalityit hasbeenassumedthat the input signalis rescaled
suchthat |s} ~����  �"(� ~ . After all stagesof auditory front-end
processing,the resultingdatawere down sampledto 100 Hz
rate, and DCT (discretecosine transfer) was applied. Only
the first 12 DCT featuresare retainedto reducethe feature
dimension.
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Fig. 5. Measuredfrequency responseof second-orderbandpassfilter

For comparison,MFCCfeaturesweregeneratedby applying
a Hamming window of size 25 ms and overlap 15 ms to
thesamepre-emphasized24-channelMel-scalefilterbank.The
cepstralfeatureswereobtainedfrom DCT of log-energy over
the 24 frequency channels.

Figure 6 shows a sample comparisonbetweenauditory
featuresand correspondingMFCC featuresfor digit five ob-
tained before DCT operation,at different SNR levels. The
degradationof spectralfeaturesfor MFCC in the presenceof
white noise is evident, whereasauditory featuresprevail at
elevatednoiselevels.
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Fig. 6. MFCC features(a)-(c) and linear auditoryperceptionfeatures(d)-(f)
for digit five obtainedbefore DCT, under white Gaussiannoiseconditions
at different SNR(clean,30 dB and 20 dB).

As in [13], the training set containedtwo utterancesof
isolateddigits eachfrom 35 malespeakerscomprisinga total
of 770 utterances,and the test set containedisolateddigits
from 25 othermale speakers for a total of 440 utterances.A
recognitionsystemwas developedusing the Hidden Markov
Toolkit HTK, implementinga 14-stateleft-to-right transition
modelfor eachdigit wheretheprobabilitydistributionon each

statewas modeledas a four-mixture Gaussian.Noise sam-
ples for the experimentswere obtainedfrom the ¢¤£�¥3¦¨§ª©
databaseand were addedto cleanspeechto obtain test data.
We consideredfour types of noise common in application
environments:white noise(

/
), speechbabblenoise(

-
), fac-

tory noise( « , plate-cuttingandelectricalweldingequipment)
and car interior noise( P , Volvo 340 at 75 mph under rainy
conditions).

Table II summarizesthe recognitionratesobtainedbased
on the two featuresunderdifferentnoisestatisticsand under
different SNR levels. Recognitionratesare obtainedwith an
identically trained HMM system for all models, and with
speechsubjectedto additive car ( P ), babble(

-
), factory ( « )

andwhite Gaussian(
/

) noise,at variousSNR levels.

TABLE II

RECOGNITION RATES FOR MFCC AND AUDITORY FEATURES

Clean 30dB 20dB 10dB¬
MFCC 98.8% 98.6% 98.1% 96.8%

Lin. Auditory 98.6% 98.6% 98.6% 98.6%

Log Auditory 98.8% 98.6% 98.8% 98.6%­
MFCC - 97.2% 93.8% 60.7%

Lin. Auditory - 98.6% 97.9% 74.1%

Log Auditory - 98.4% 93.2% 72.5%®
MFCC - 95.9% 67.7% 28.6%

Lin. Auditory - 98.6% 93.4% 44.3%

Log Auditory - 97.7% 91.8% 61.6%¯
MFCC - 81.1% 27.5% 12.2%

Lin. Auditory - 98.6% 92.3% 27.7%

Log Auditory - 98.4% 95.7% 72.7%

The following canbe inferredfrom the tabulatedresults:

1) For cleanspeechtheperformanceof MFCCandauditory
systemsare comparable.For contaminatedspeech,the
auditorymodelsshow superiorperformancefor all noise
typesat all SNR levels, but one entry in the table (log
auditoryat 20 dB SNR).

2) For all noisetypesat low noiselevel (30 dB SNR), the
auditorymodelsdo not degradein performance.

3) For car noise, the auditory models maintain constant
performancedown to 10 dB SNR level.

4) For white noise and factory noise, auditory fea-
turesdemonstratesignificantly betterperformancethan
MFCC. The improvementis most significant with the
logarithmicauditory features.

5) For babblenoise,improvementsby theauditoryfeatures
are leastsignificant,but still noticeable.

Sincebabbleis essentiallyspeech,further advanceswould
requirea meansto separatemultiple speechcomponentsin the
signal,e.g., using [14]. For other typesof noisethat overlap
minimally with the spectralandtemporalstructureof speech,
the improvementsaresignificant.



A higher level of noiserobustness(down to 0 dB SNR),at
theexpenseof a highercomplexity in implementation,canbe
achieved usingfeaturesobtainedby growth transformationin
reproducingkernelHilbert space[13].

V. CONCLUSIONS

A functionallysimple,auditoryperceptionmodelfor noise-
robust speechrecognition was presented.The model maps
directly ontoparallelVLSI hardwareusinganalogcontinuous-
time filters, for efficient low-power andreal-timeimplementa-
tion. To illustratethefilter characteristicsachievablefrom such
analog implementation,a prototypeCMOS chip was fabri-
catedandanalyzedexperimentally. Simulationsof the model
using HMM recognizerstrained on the TI-DIGIT database
demonstratedtherobustnessof theauditoryfeaturesto noiseof
differentstatistics,significantlyoutperformingMFCC features
at elevatednoiselevels,down to 10 dB SNR.
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