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Abstract— An auditory perception model for noise-robust
speech feature extraction is presented. The model assumes
continuous-timefiltering and rectification, amenableto real-time,
low-power analog VLS| implementation. A 3mmx3mm CMOS
chip in 0.5um CMOS technology implements the general form
of the model with digitally programmable filter parameters.
Experiments on the TI-DIGIT databasedemonstrate consistent
robustnessof the new featuresto noiseof various statistics, yield-
ing significant improvementsin digit recognition accuracy over
models identically trained using Mel-scale frequency cepstral
coefficient (MFCC) features.

I. INTRODUCTION

Despite the successof speechrecognition systems for
clean speechin controlled ervironments, their performance
degradesseverely whenthey are subjectedo noisein natural
ervironments[1]. One remedyto this problem has beento
reducethe mismatchby training or retrainingthe recognition
systemundernoisy conditionsrepresentatie of theapplication
ervironment. Elaboratetechniquesto reducethis mismatch
have beenproposedn the literature[2], [3].

The motivation for auditory basedspectral analysis [4],
[5], [6] is to gain recognitionperformancan natural (noisy)
listening ervironmentsfrom the understandingof how the
human ear processesspeech.Auditory based models tend
to elegant and efficient, physically basedimplementationin
analogVLSI parallelhardware[7], [8], [9].

Ratherthanattemptingto modelexact physiologicaldetail,
our goal in silicon implementationof auditory perception
for robust speechrecognitionis to focus on effective signal
processingin the humanear A simple model abstraction
of the auditory systemis proposed,that leadsto efficient
implementatiorin analogVLSI while offering sufiicient flex-
ibility in tuning recognitionperformanceby adjustingsystem
parametersin the architecture.The architecturecomprises
analog continuous-timefilters with digitally programmable
coeficients,integratedon a single VLSI chip.

Sectionll introduceghe auditory perceptionrmodel,andits
architectureAnalog circuit implementatiorof the front endof
the modelis describedand characterizedn Sectionlll. Sec-
tion IV presentgesultsfrom speechrecognitionexperiments
usingthe model,and SectionV providesconcludingremarks,
discussionsand future directions.

Il. AUDITORY PERCEPTION MODEL

The key to noise robustnessin auditory perceptionis a
schemeto filter out noisewhile retainingcomponentof the
signal characteristiof speechAn auditory perceptuaimodel
was proposedn [4], that usesadaptve dynamiccompression
of spectralfeaturesas an alternatve to static nonlinear(loga-
rithmic) compressiorasusedin MFCC. Significantreduction
in recognition error was obsered in comparisonwith a
recognizertrainedusing MFCC features.

The proposedauditory perceptionmodel is basedon [4]
and differs mainly in the functionalform of the compression
stage. The compressionstage of [4] is composedof five
consecutie nonlinearadaptationoops,whereeachadaptation
loop consistsof a divider and lowpassfilter.

The model comprisesfour stages:a pre-emphasistage;
a constante) bandpasdilterbank; a rectification stage;and
a bandpassompressiorstagewhich abstractsthe nonlinear
adaptve compressiorstageof [4]. The signal flow is shovn
in Figure1.

The pre-emphasistageis basedon the obsenationthatthe
humanear is insensitve to signalsof frequeny lower than
50Hz. This stageis implementedby an analogsecond-order
Butterworth highpasdilter.

The 24-channelbandpasdilterbank stageis composedof
second-ordeconstants) biquadfilters asan approximatiorto
the frequeny responseof the humanear basilar membrane.
The transferfunction of eachof the filters is given by:
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with center frequengy w;, and with constantquality factor
Q. Constant@ implies that the filter bandwidthscaleswith
the centerfrequeng, Q w;/BW;, to trade resolutionin
time andfrequeng in a wavelet-like manner To simulatethe
Mel/Bark scale frequenyg sensitvity of the humaneat the
centerfrequenciesof the filters are chosenaccordingto the
critical banddistribution [10]. The frequeng responseof the
filterbankis shawvn in Figure 2.

Full wave rectification extracts amplitude magnitudeen-
velope information in each frequeng band, modeling the
responseof hair cells transductionin the human auditory
system.The rectified output is lowpassfiltered with a cutoff
frequeng at 1 kHz.



Two versionsof the compressionstageare consideredn
the model, shovn in Figure 1: one linear, and one with
an additional log static non-linearity prior to the bandpass
filtering. Thelog compressiorsenesa purposesimilar to that
in MFCC, providing outputsthat arelesssensitve to spectral
shapingdueto the acousticof the environment(reverberation,
resonancestc.)

Theabsencef log compressioiin thelinearversionfurther
simplifies the implementationin Figure 1 (b), by obviating
the need for the lowpass stage since it is subsumedby
the subsequentow-frequeny bandpasstage.Similarly, the
highpasspre-emphasisstage can be eliminated given it is
subsumedy the subsequenhigh-frequeng bandpasstage.

The critical componenfor noiserobustnesss the bandpass
filterbankin the compressiorstage,implementedwith low-Q
second-ordebiquadfilters. Thefilterbank offers the function-
ality of the nonlinearadaptve compressiormodelin [4], but
simplifiesthe implementation.

The centerfrequencief the compressiorstagefilterbank
are linearly spacedbetweenl0 Hz and 24 Hz. This rangeof
frequenciesnatcheghefilter characteristicebsernedfrom the
adaptie compressiomodelof [4], andcorrespondso typical
spectraof the amplitudeenvelopeof humanspeech.

The resulting model is similar to RASTA processingof
speech6], in thatit performscritical bandanalysisfollowed
by low-frequeny bandpassfiltering. RASTA includes log
static compressiorof the amplitudespectraprior to bandpass

filtering. Hence,the noise robustnessof the log-compressed

versionof the presenmodelcanbe expectedo be comparable
to that of RASTA. However, the linear versionis easierto
implementin VLSI, andgivescomparableesultsasshavn in
the experimentssectionbelow.

I1l. ANALOG VLSI IMPLEMENTATION

To illustrate the feasibility of implementingthe model in
massvely parallel VLSI hardware, a general-purpos@nalog
front-endchip is presented.

The 0.5um CMOS chip contains32 programmablenalog
continuous-timefilter channels,which can be configuredin
parallel or cascadefilterbank topologies. Each channelin-
cludestwo bandpassr lowpasssecond-ordefilters, a full-
wave rectifier, and a first-order lowpassfilter. Henceit of-
fers the full functionality of the simplified linear model of
Figure 1 (b). The centerfrequeng, bandwidthand gain of
all filters areindividually digitally programmableAs in [11],
Level-crossingevent detectionis also provided to implement
otherauditoryfront-endmodels,e.g., [5].

Advantagesof the analog implementationinclude high
integrationdensityandlow power consumptiorin comparison
with digital implementation,and the continuous-timesignal
representationwhich avoids the need to sample and de-
alias the speechsignal. Continuous-timeanalog filters are
conveniently implementedusing transconductancamplifiers
and capacitors,and achieve higher enegetic efficiengy than
switched-capacitdiilters which requireexcessbandwidthand
thus higher power in the amplifiers.
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Fig. 1. Signal flow of logarithmic (a) and simplified linear (b) auditory
perceptionmodel

A fully differential signal representations adoptedin the
implementationgcarryingthe signalalongwith its complement
throughoutall stageof thearchitectureWhile thefully differ-
entialsignalformatimpliesa doublingof circuit compleity in
theimplementationit offersseveraladvantagesn maintaining
high precision over single-endedimplementation:doubling
of the signal-to-noiseratio (SNR); high immunity to power
supply noise; and elimination of all even-order distortion
products(harmonics).

A second-ordeOTA-C (operationaltransconductancam-
plifier and capacitor) biquad filter topology is showvn in
Figure 3. It senes both as bandpassand lowpassfilter, by
selecting either of two outputs Vbp or Vip. The transfer
function of the bandpasdilter is given by

)

where G1, G2, G3 and G4 are individually programmable
OTA transconductancealues.The variabletransconductance
is obtainedthrough current scaling techniquesas described
in [12]. CapacitorsCy, Cy are integrated on chip, with
digitally selectablecapacitancevalues.The filter parameters
in (1) are determinedby the programmediransconductance
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Fig. 2. Frequeng responsef the constanty) bandpasdilterbank
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Fig. 3. Digitally programmablegonstanty) OTA-C bandpasfilter design

The differential signal representatiorprovides for elegant
implementatiorof the full-wave rectifier, using a single com-
paratoranda cross-baswitch that eitherpasse®r invertsthe
polarity of the differential signal.

Although not implementedon the presentchip, logarithmic
compressionin the model variant of Figure 1 (a) can be
accomplishedby linear OTA voltage-to-currentcorversion,
followed by logarithmic current-to-wltage corversion on a
diode, or a diode connectedbipolar junction transistor or
subthresholdMOS transistor

The photomicrograptof the fabricatedfront-endprocessor
is shawvn in Figure 4. The chip measureSmm x 3mm in
0.5 um CMOS technology Table | summarizeghe specifi-
cation and measuredperformancefigures of a single OTA.
The frequeng responseof second-ordebandpasdilters pro-
grammedat differentcenterfrequenciess shawn in Figure5.

Fig. 4. Photomicrograplof programmablendreconfigurableDTA-C array

Furtherdetailson circuits, measurementand characteriza-

tion are presentedn [12].

TABLE |
MEASURED OTA CHARACTERISTICS

ParameterSpecification Measured

1.6 ANV
0.78 nA/V
1/2048
20 mvV
1.2V
0.5-3V
1.0-4.0vV
40 dB
0.014mm

Max

Min
Programmingatio
Input offset voltage
Max dynamicinput range
Commonmodeinput voltagerange
Commonmodeoutputvoltagerange
Commonmoderejectionratio
Silicon area
Power supply

Power consumption 12 W

IV. RECOGNITION EXPERIMENTS WITH AUDITORY
PERCEPTION MODEL

To comparethe recognition performanceof the proposed
auditory perceptionmodel with that obtainedusing MFCC
features,we chose as benchmarkthe standard TI-DIGIT
isolateddigit recognitiondatasetwith a vocalulary sizeof 11
(zeroto nine plus*‘O’). During recognition the acousticsignal
from the TI-DIGIT was subjectedto additive noisefrom the
NOISEX databasegdescribedurther below.

Parameter®of the simulatedauditory modelare asfollows.
The quality factorof the secondstagebandpasfiltersis Q =
4, andthat of the compressiorstage = . . Withoutlossof
generalityit hasbeenassumedhatthe input signalis rescaled
suchthat 1, . After all stagesof auditoryfront-end
processingthe resultingdatawere down sampledto 100 Hz
rate, and DCT (discretecosine transfer) was applied. Only
the first 12 DCT featuresare retainedto reducethe feature
dimension.



Fig. 5. Measuredrequeng responsef second-ordebandpassilter

For comparisonMFCC featuresveregeneratedby applying
a Hamming window of size 25 ms and overlap 15 ms to
the samepre-emphasized4-channeMel-scalefilterbank.The
cepstralfeatureswere obtainedfrom DCT of log-enegy over
the 24 frequeng channels.

Figure 6 shovs a sample comparisonbetweenauditory
featuresand correspondinglFCC featuresfor digit five ob-
tained before DCT operation,at different SNR levels. The
degradationof spectralfeaturesfor MFCC in the presenceof
white noise is evident, whereasauditory featuresprevail at
elevatednoiselevels.
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Fig. 6. MFCC featues(a)-(c) andlinear auditory perceptionfeatues (d)-(f)
for digit five obtainedbefoe DCT, under white Gaussiannoise conditions
at different SNR(clean, 30 dB and 20 dB).

As in [13], the training set containedtwo utterancesof
isolateddigits eachfrom 35 male spealers comprisinga total
of 770 utterancesand the test set containedisolated digits
from 25 other male spealersfor a total of 440 utterancesA
recognitionsystemwas developedusing the Hidden Markov
Toolkit HTK, implementinga 14-stateleft-to-right transition
modelfor eachdigit wherethe probability distribution on each

state was modeledas a four-mixture Gaussian.Noise sam-
plesfor the experimentswere obtainedfrom the
databaseind were addedto cleanspeechto obtaintest data.
We consideredfour types of noise commonin application
environmentswhite noise(W), speectbabblenoise(B), fac-
tory noise( , plate-cuttingandelectricalwelding equipment)
and car interior noise (C, Volvo 340 at 75 mph underrainy
conditions).

Table Il summarizeghe recognitionrates obtainedbased
on the two featuresunderdifferent noise statisticsand under
different SNR levels. Recognitionratesare obtainedwith an
identically trained HMM systemfor all models, and with
speechsubjectedo additive car (C), babble(B), factory( )
andwhite Gaussian(W) noise,at variousSNR levels.

TABLE I
RECOGNITION RATES FOR MFCC AND AUDITORY FEATURES

| ] | Clean | 30dB | 20dB | 10dB |
MFCC 98.8% | 98.6% | 98.1% | 96.8%
Lin. Auditory | 98.6% | 98.6% | 98.6% | 98.6%
Log Auditory | 98.8% | 98.6% | 98.8% | 98.6%
MFCC - 97.2% | 93.8% | 60.7%
Lin. Auditory - 98.6% | 97.9% | 74.1%
Log Auditory - 98.4% | 93.2% | 72.5%
MFCC - 95.9% | 67.7% | 28.6%
Lin. Auditory - 98.6% | 93.4% | 44.3%
Log Auditory - 97.7% | 91.8% | 61.6%
MFCC - 81.1% | 27.5% | 12.2%
Lin. Auditory - 98.6% | 92.3% | 27.7%
Log Auditory - 98.4% | 95.7% | 72.7%

The following canbe inferredfrom the tatulatedresults:

1) Forcleanspeectiheperformancef MFCC andauditory
systemsare comparableFor contaminatedspeechthe
auditorymodelsshowv superiomperformancédor all noise
typesat all SNR levels, but one entry in the table (log
auditoryat 20 dB SNR).

2) For all noisetypesat low noiselevel (30 dB SNR), the
auditory modelsdo not degradein performance.

3) For car noise, the auditory models maintain constant
performancedown to 10 dB SNR level.

4) For white noise and factory noise, auditory fea-
turesdemonstratesignificantly better performancethan
MFCC. The improvementis most significantwith the
logarithmicauditoryfeatures.

5) For babblenoise,improvementsy the auditoryfeatures
are leastsignificant,but still noticeable.

Sincebabbleis essentiallyspeechfurther advanceswould
requirea meango separatenultiple speectcomponentsn the
signal, e.g., using[14]. For othertypesof noisethat overlap
minimally with the spectralandtemporalstructureof speech,
the improvementsare significant.



A higherlevel of noiserobustnesgdown to 0 dB SNR), at
the expenseof a highercompleity in implementationcanbe
achieved usingfeaturesobtainedby growth transformationin
reproducingkernel Hilbert space[13].

V. CONCLUSIONS

A functionally simple,auditory perceptiormodelfor noise-
robust speechrecognition was presented.The model maps
directly onto parallel VLSI hardwareusinganalogcontinuous-
time filters, for efficient low-power andreal-timeimplementa-
tion. To illustratethefilter characteristicachiezablefrom such
analogimplementation,a prototype CMOS chip was fabri-
catedand analyzedexperimentally Simulationsof the model
using HMM recognizerstrained on the TI-DIGIT database
demonstratetherobustnes®f theauditoryfeaturedo noiseof
differentstatistics significantlyoutperformingMFCC features
at elevatednoiselevels, down to 10 dB SNR.
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