
Neuromorphic Learning VLSI Systems: A Survey

Gert Cauwenberghs

Electrical and Computer Engineering

Johns Hopkins University, Baltimore, MD 21218

E-mail: gert@bach.ece.jhu.edu

Abstract

This [chapter] reviews advances in hardware learning and adaptation in synthetic neural

systems. Over the last decade, research in the �eld has intensi�ed, drawing inspiration

across several science and engineering disciplines. This review brie
y covers neural models,

implementation technology, architectural constraints, and system applications of learning

in hardware.

1 Introduction

Carver Mead introduced \neuromorphic engineering" [1] as an interdisciplinary approach to

the design of biologically inspired neural information processing systems, whereby neurophys-

iological models of perception and information processing in biological systems are mapped

onto analog VLSI systems that not only emulate their functions but also resemble their struc-

ture [2]. The motivation for emulating neural function and structure in analog VLSI is the

realization that challenging tasks of perception, classi�cation, association and control success-

fully performed by living organisms can only be accomplished in arti�cial systems by using an

implementation medium that matches their structure and organization.

Essential to neuromorphic systems are mechanisms of adaptation and learning, modeled

after the \plasticity" of synapses and neural structure in biological systems [3],[4]. Learning can

be broadly de�ned as a special case of adaptation whereby past experience is used e�ectively in

readjusting the system response to previously unseen, although similar, stimuli. Based on the

nature and availability of a training feedback signal, learning algorithms for arti�cial neural

networks fall under three broad categories: unsupervised, supervised and reward/punishment

(reinforcement). Physiological experiments have revealed plasticity mechanisms in biology that

correspond to Hebbian unsupervised learning [5], and classical (pavlovian) conditioning [6],[7]

characteristic of reinforcement learning.

Mechanisms of adaptation and learning also provide a means to compensate for analog

imperfections in the physical implementation of neuromorphic systems, and 
uctuations and

uncertainties in the environment in which it operates. To this end, it is crucial that the learning

be continuously performed on the system in operation. This enables the system to be func-

tionally self-contained, and to adapt continuously to the environment in which they operate.
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For neuromorphic systems which involve a large number of parameters such as synapses in a

densely connected neural network, it is imperative that the learning functions be an integral

part of the hardware, implemented locally and interfacing directly with the synaptic functions.

Practical limits of integrated implementation of learning functions are imposed by the

degree of locality implied by the learning rule, and the available memory bandwidth and

fanout provided by the technology. This is an important point to consider in the design, and

determines whether an electronic, optical, or hybrid implementation is most suited for the

targeted application. A very important consideration as well is the need for locally storing the

analog or digital parameter values, to retain the information being extracted during learning.

Not surprisingly, technological issues of adaptation and memory are directly related, and both

need to be addressed concurrently.

A vast research literature is dedicated to various styles of neural hardware implementations

with provisions for learning, some of it with integrated learning functions. A selection of the

literature (which is bound to be incomplete even at the time of printing!) is included in

the list of references below. Some examples of early implementations of neural systems with

integrated adaptation and learning functions can be found in edited volumes such as [8], [9]

and [10], in conference proceedings such as NIPS, IJCNN (ICNN/WCNN) and ISCAS, and in

special and regular issues of journals such as IEEE Transactions on Neural Networks (May 1992

and 1993 [12]), IEEE Micro (Micro-Neuro special issues) and Kluwer's International Journal of

Analog Integrated Circuits and Signal Processing [13, 14]. The exposition below will serve as a

brief description of a limited cross-section of research in the �eld over the last decade (mainly

focusing on analog VLSI systems), as well as a general coverage of the important issues.

2 Adaptation and Learning

De�nitions for the terms adaptation and learning come in several varieties, di�ering with the

particular discipline in which it is formulated, such as cognitive science, neuroscience, neural

computation, arti�cial intelligence, information theory, and control theory.

From a system level perspective, a general framework for adaptation and learning is de-

picted in Figure 1 [17]. A system with adjustable parameters pi (vector p) interacts with

the environment through sensory inputs and activation outputs. An adaptive element, either

internal or external to the system, adjusts the parameters of the system to \optimize" some

performance index that is either de�ned or implied in relation to the system and its interaction

with the environment. In most models of learning and adaptation, the measure of performance

is quanti�ed either as an error index E(p) which needs to be minimized:

p = argmin E(p) (1)

or, equivalently, a quality index which needs to be maximized. The optimization is subject

to suitable constraints that have to do with physical limits on the system as well as other

requirements on the system and the way it interacts with the environment.
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Figure 1: Adaptation and learning in an information processing system by adjusting the analog

system parameters pi to optimize a performance index E(p). The system interacts with the

environment through its sensory inputs and activation outputs.

What distinguishes learning from more general forms of adaptation is the way in which

the system uses past experience in trying to respond e�ectively to previously unseen, although

similar, input stimuli. The distinct objective in learning is to generalize beyond the speci�cs

of the presented input samples, and minimize the expected value of E(p) from the underlying

statistics of the training samples:

p = argmin E(E(p)) : (2)

Based on the nature and availability of a training feedback signal in the formulation of

E(E(p)), learning algorithms for arti�cial neural networks (ANNs) fall under three broad

categories: supervised [19], unsupervised [26], and reward/punishment (reinforcement) [33].

Supervised Learning [18]-[23] assumes that a \teacher" is continuously available to produce

target values ytargetk (t) for the outputs yk(t), whereby the (instantaneous) error index is

quanti�ed as the distance between actual and target outputs

E(p; t) =
X

k

jytargetk (t) � yk(t)j
� ; (3)

using a distance metric with norm � > 0. Supervised learning is in a sense the easiest

case of learning to implement, since the learning task is well de�ned and the performance

index, directly quanti�ed in terms of the target training signals, can be evaluated and

optimized on-line. The most popular of all learning algorithms is backpropagation [20],

which is e�ectively the chain rule of di�erentiation applied to gradient descent of (3) on

a multilayer feedforward ANN, and which can be extended to more general feedforward

structures [19], and to more complex structures with recurrent dynamics in the state

variables [22, 23]. A system example of supervised learning in VLSI with recurrent

dynamics is presented in [the next chapter].

Unsupervised learning [24]-[29] does not assume any feedback from an external teacher,

and attempts to classify inputs based on the underlying statistics of the data. Classi�ers
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of this type are intended for tasks which inherently require some form of data com-

pression or an otherwise more suitable data representation for subsequent information

processing. The criterion for adjusting the boundaries between classes can be expressed

in information-theoretic terms, either as to maximize the mutual information between

the analog inputs and the discrete output classes [28], or (equivalently) to minimize the

average description length of the output classes [30]. Typical unsupervised learning tech-

niques include Hebbian learning [24] in a self-organizing neural network, auto-associative

memories [26, 25], k-means clustering in a vector quantizer [27], and adaptive resonance

theory [29]. A VLSI learning binary vector quantizer is described in [one of the following

chapters].

Reinforcement learning [32]-[38] assumes the available external feedback on system per-

formance is limited to discrete-time, delayed rewards and punishments, without a target

speci�ed for the system outputs. The di�culty in this type of learning is the assignment

of proper credit to responsible actions in the past leading to the system failure or success

indicated by the penalty or reward. Algorithms of the reinforcement learning type use

internal mechanisms of credit assignment which make no prior assumptions on the causal

relationships of the system and the enviroment in which it operates. Closely related to

models of learning in arti�cial intelligence [31, 39], they include \time di�erence learning"

or TD(�) [35] as a special case of [33], Q-learning [38] using a value function on the state

space for optimal policy iteration, and \advanced heuristic dynamic programming" [36]

using vectorial gradient information for increased speed of convergence. Details on rein-

forcement learning system in analog VLSI and a system example are given in [the next

chapter].

Hybrids: Unsupervised and supervised learning approaches can be combined in many

ways with various networks architectures to generate internally self-organizing adap-

tive hetero-associative systems. This synthesis reaches beyond neural nets in the re-

stricted sense of what is conventionally known as ANNs, and includes fuzzy neural sys-

tems [40, 41, 42] as well as \hierarchical mixture of experts" models trained with the

expectation-maximization algorithm [43]. In both cases, internal structure is learned

using unsupervised clustering techniques based on the input statistics, and the output

structure is trained through (gradient-based and other) supervised learning.

3 Technology

Biological neural systems are built out of \wetware" components in an implementationmedium

which is necessarily di�erent from technologies available to the implementation of arti�cial

computing systems, such as semiconductors and optical propagation media. The neuromor-

phic engineering approach extends the functionality and structure of biological systems to

arti�cial systems built with components and architectures that closely resemble their biologi-

cal counterparts at all levels, transparent to di�erences in technology. Still, the physical limits
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on size, density and connectivity depend strongly on the technology used.

Most neural hardware implementations use VLSI technology, which is functionally highly

versatile but mostly restricted to two dimensions. The planar nature of VLSI technology

is not necessarily a restriction for neural implementations since neural structures such as in

the cerebral cortex are mostly two-dimensional as well| after all the brain is itself a folded

2-D structure. Optical free-space interconnects, on the other hand, allow synaptic densities

presently unavailable in state-of-the-art VLSI technology. Hybrid opto-electronic systems com-

bine the technological advantages of both worlds, with functionally rich local VLSI processing

and global optical interconnects.

For learning and adaptation, a central issue in all implementation technologies is the local

storage of synaptic parameters. This issue, together with the means of incrementally adapting

the stored parameters, is addressed below in particular detail. For brevity, the exposition

focuses mainly on electronic implementations in analog VLSI technology.

3.1 VLSI Subthreshold MOS Technology

MOS transistors operating in the subthreshold region [46] are attractive for use in medium-

speed, medium-accuracy analog VLSI processing, because of the low current levels and the

exponential current-voltage characteristics that span a wide dynamic range of currents [47]

(roughly from 100 fA to 100 nA for a square device in 2 �m CMOS technology at room

temperature). Subthreshold MOS transistors provide a clear \neuromorph" [1], since their

exponential I-V characteristics closely resemble the carrier transport though cell membranes

in biological neural systems, as governed by the same Boltzman statistics [45]. The expo-

nential characteristics provide a variety of subthreshold MOS circuit topologies that serve as

useful computational primitives (such as nonlinear conductances, sigmoid nonlinearities, etc.)

for compact analog VLSI implementation of neural systems [2]. Of particular interest are

translinear subthreshold MOS circuits, derived from similar bipolar circuits [47]. They are

based on the exponential nature of current-voltage relationships, and o�er attractive compact

implementations of product and division operations in VLSI.

3.2 Adaptation and Memory

Learning in analog VLSI systems is inherently coupled with the problem of storage of analog

information, since after learning it is most often desirable to retain the learned weights for an

extended period of time. The same is true for biological neural systems, and mechanisms of

plasticity for short-term and long-term synaptic storage are not yet clearly understood.

In VLSI, analog weights are conveniently stored as charge or voltage on a capacitor. A

capacitive memory is generically depicted in Figure 2. The stored weight charge is preserved

when brought in contact with the gate of an MOS transistor, which serves as a bu�er between

weight storage and the implementation of the synaptic function. An adaptive element in
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Figure 2: Adaptation and memory in analog VLSI: storage cell with charge bu�er.

contact with the capacitor updates the stored weight in the form of discrete charge increments

Vstored(t+�t) = Vstored(t) +
1

C
�Qadapt(t) (4)

or, equivalently, a contin uous current supplying a derivative

d

dt
Vstored(t) =

1

C
Iadapt(t) (5)

where �Qadapt(t) =
R t+�t
t Iadapt(t

0)dt0.

On itself, a 
oating gate capacitor is a near-perfect memory. How ev er,leakage and spon-

taneous decay of the weights result when the capacitor is in volatile contact with the adaptive

element, suc has through drain or source terminals of MOS transistors. This distinguishes

volatile from non-volatile storage VLSI tec hnology. An excellent review of analog memories

for neural computation is given in [48].

Non-volatile Memories [49 ]-[60] contain adaptive elements that interface with the 
oating

gate capacitor by capacitive coupling across an insulating oxide. In standard CMOS VLSI

technologies, charge transport through the oxide is typically controlled by tunneling [84,

134, 49 , 51], hot electron injection [59] or UV-activated conduction [179, 52 , 56, 74]. Flash

memories o�er fast adaptation rates (msecs) and long retention times (y ears) without

the need for high programming voltages or UV light, but are not standardly available in

CMOS processes.

Volatile Memories [49 ],[61 ]-[66 ]o�er fast adaptation rates and instantaneous reprogram-

ming of the parameter values, using a voltage-controlled ohmic connection to the capaci-

tor in the form of MOS switches and switched current sources. A leakage current results

from the reverse diode formed betw eensource and drain di�usions and bulk connection

of a switch transistor. The leakage typically resticts the retention time of the memory to

the msec range, adequate for short-term storage. An active refresh mechanism is required

for long-term storage [49],[62]-[64]. An adaptive element which combines active refresh

storage and incremental adaptation, and which allows a random-access read and write

digital interface, is described in [the next chapter].
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Other implementations frequently use local or external digital storage of the parameters,

combined with either local or multiplexed D/A conversion. This solution is less attractive for

large-scale neural processors with local learning functions that require incremental adaptation

of the parameters, since then the increment would need to be performed in digital as well. Both

volatile and non-volatile analog memories allow incremental updates in direct analog format,

according to (4) or (5).

The non-volatile solution is more attractive than volatile alternatives when long-term stor-

age is a more pressing concern than speed of adaptation and 
exibility of programming.

The volatile scheme is particularly useful in multiplexed hardware implementations for multi-

purpose applications or to realize virtual larger-scale systems, requiring frequent reloading of

large blocks of partial weight matrices. This could be done with an external digital cache

memory and an array of A/D/A converters for bi-directional digital read and write access to

the synaptic array [65]. Random-access memory addressing in digital format is on itself a

valuable feature for system-level interfacing.

3.3 Emerging Technologies

Innovation and continued progress in information technology bene�ts the design of learning

neural systems of larger size and better performance, as it bene�ts other information pro-

cessing systems. Some relatively new developments in VLSI include micro-electromechanical

systems (MEMS) [67], wafer-scale integration [141, 143], chip-scale packaging [68], and silicon-

on-insulator (SOI) integrated circuit fabrication [69, 70]. The latter is of special interest to

analog storage, because signi�cant reduction of leakage currents due to bulk reverse diodes in

MOS switches allows longer retention times of capacitive memories.

Continued technology developments in optical and optoelectronic information processing

in combination with mature VLSI technology hold the potential for signi�cant performance

improvements in arti�cial neural information processing systems [150]-[158], promising massive

inter-chip connectivity as needed for larger size neural networks. High-density optical storage

and adaptation for integrated learning could be achieved in 3-D optical media such as photo-

refractive crystals.

4 Architecture

Learning algorithms that are e�ciently implemented on general-purpose digital computers

do not necessarily map e�ciently onto analog VLSI hardware. The good news is that the

converse is also true, as it is well known that special-purpose processors tuned to a given task

easily outperform most general-purpose computing engines, on that particular task. From

the perspective of computational e�ciency, it is therefore important to closely coordinate the

design of algorithms and corresponding VLSI architecture to ensure an optimal match.

Important guidelines in e�ciency of computation dictate the usual principles commonly

taught in modern VLSI design: locality, scalability, and parallelism. The principle of locality
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con�nes intensive computations to the cell level, and restricts global operations to nearest-

neighbor interactions. In addition, certain scalar global operations which can be easily per-

formed with a single common wire in analog VLSI technology are allowed, such as global

summing of currents or charges, and global communication of voltage-coded variables. Scal-

ability implies that the implemented algorithms cannot scale stronger than second order in

a linear parameter such as the number of neurons, since nothing more complex than a 2-D

array can be implemented on an extended scale in planar VLSI technology. Parallelism in this

context implies that the number of operations performed concurrently at any given time scales

linearly with the number of cells.

Even if the learning algorithm supports a parallel and scalable architecture suitable for

analog VLSI implementation, inaccuracies in the implementation of the learning functions

may signi�cantly a�ect the performance of the trained system. Neuromorphic principles call

for a distributed architecture not only for the network of neurons but also to implement the

learning functions, robust to localized errors in the implementation.

4.1 Incremental Outer-Product Learning in Distributed Systems

For networks with distributed neurons such as linear and multilayer perceptrons [20]

xi = f(
X

j

pijxj) (6)

gradient descent of an LMS error functional E de�ned on the output neurons xoutk gives rise to

incremental outer-product learning rules of the form

�pij = � xjei (7)

where the backpropagation of the error variables ei is derived by application of the chain rule

for di�erentiation as [19]

eoutk = �f 0

k

@E

@xoutk

(8)

ej = f 0

j

X

i

pijei

where f 0

j denotes the derivative of the function f(:) evaluated at its argument in (6). Outer-

product rules of the form (7) are local: synaptic updates are constructed from intersecting

variables at the location of the synapses. The general class of learning algorithms of the

incremental outer-product type include

Supervised Learning: the delta rule [18] and backpropagation [20] for supervised learning

in linear or multilayer feedforward perceptrons with a functional (3). Also included,

with stochastic rather than deterministic neurons, are Boltzman learning in networks of

stochastic neurons [21, 71], and pulse �ring neural nets [89].

8



Unsupervised Learning: hebbian learning [24], where ei = f 0

ixi corresponding to a func-

tional E � �
P

i xi
2. The k-means clustering algorithm for learning vector quantization

(LVQ) [27] is a special case of the latter, where the nonlinearity in the output layer fk se-

lects a single winner across all outputs k. Kohonen topology-preserving maps [26] further

include the neighbors of the winner k � 1 into the learning updates. Learning in ART

networks [29] also �ts in this category although it is slightly more involved. Learning in

Hop�eld networks [25] is hebbian in slightly modi�ed form.

Hybrids and Variants: fuzzy maps, hetero-associative neural networks, radial basis

networks, etc. which conform to the general structure of Eqns. (6)-(9) and their variants

and combinations.

Reinforcement Learning: The reinforcement learning updates for both the action network

and the adaptive critic in [33] are of the general incremental outer-product form (7), al-

though modulated with a global (common) reinforcement signal, and low-pass �ltered for

credit assignment back in time. See [the next chapter] for more details on the equivalent

gradient-descent outer-product formulation. An outer-product VLSI implementation is

described in [116].

Since all of the above learning algorithm share essentially the same incremental outer-

product learning rule, they can be cast into the same general VLSI architecture depicted in

Figure 3. Clearly, this architecture exhibits the desirable properties of locality, parallelism and

scalability. Forward and backward signal paths xj and ei traverse in horizontal and vertical

directions through the array of synapse cells pij . The neuron nonlinearity f(:) and its derivative

are implemented at the output periphery the array. Several layers of this structure can be

cascaded in alternating horizontal and vertical directions to form multi-layer perceptrons. The

array architecture of Figure 3 (b) forms the basis for many of the implemented VLSI learning

systems [71]-[103]. One example, described in [74], arguably contains the densest VLSI array

for general outer-product learning developed to date, using only two transistors for synapse

and learning operations per cell. An array of single-transistor learning synapses for certain

classes of learning is presented in [59].

Digital VLSI implementations [139]-[149] di�er from the analog architecture mainly in that

contributions to the summations in (6) and (9) cannot be accumulated onto a single line.

Global summations are most commonly implemented using a systolic array architecture.

4.2 Localized Outer-Product Learning in Cellular Neural Systems

Notice that the fully interconnected architecture of Figure 3 (b) becomes ine�cient when the

network that it implements has sparse connectivity. A limiting case of sparsely interconnected

networks are cellular neural networks [105], in which neurons only interact with their immediate

neighbors, conveniently arranged on a 2-D grid. Since the synaptic connections in networks

of this type are only peripheral, the implementation architecture is determined directly by the

topology of the neurons in relation with their neighbors. The synapse and learning functions
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Figure 3: Incremental outer-product learning. (a) F eedforward and backpropagation model;

(b) Simpli�ed VLSI architecture.

are integrated at the neuron lev el,rather than distributed overan array as in Figure 3 (b).

Other than that, the same principles hold, and rules of the outer-product type as illustrated

in Figure 3 (a) are implemen ted locally at the neuron inter-cell level [104]-[107].

4.3 Model-Free Learning Approaches

Although model-based approaches for learning suc has the outerproduct learning models de-

scribed above are fairly robust to mismatches in the implemen tation of the learning functions

owing to theirdistributed arc hitecture [118, 119 , 122 , 123], the same can not be said a priori

of more general classes of learning which do not �t the outerproduct type. This is particularly

so for recurrent neural netw orks with hidden internal dynamics for which learning complexity

rises sharply with the number of parameters [22, 23 ],or for more complex systems of which

a model is di�cult to derive or unknown to the learning element. Model-free approaches to

learning [124] do not assume a particular model for the system nor the environment in which

it operates, and derive parameter updates �pi by ph ysically probingthe dependency of the

performance index E on the parameters pi through perturbations �i on the parameters.

The term \model-free" pertains to the learning, and not necessarily to the structure of the

system itself being adapted, which can be anything and which clearly is parametric. The main

advantage of model-free learning is that it leav es tremendous freedom in con�guring the system,

which is allo w edto change structurally on-line as learning progresses, without the need to

compile models. This is particularly useful for training recon�gurable architectures [135, 111].

The insensitivity of learning performance to inaccuracies in the implemented system, and the

abilit y to learn systems with intractible models, are direct bene�ts of model-free learning. An

additional bene�t of stochastic perturbative learning approaches seems to be that the synaptic

noise thus introduced improv es generalization performance of the learned system [120].

V ariants on perturbative model-free learning use some limited model information to train

feedforward multila yer ANNs more e�ectively [128, 131, 133]. The question of ho wmuc h
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model information can be reliably used is important, although truly model-free approaches

are most generally applicable and expandable, and their performance does not signi�cantly

su�er from the lack of complete gradient information on the error E as some asymptotic theory

establishes [126].

The model-free nature of learning applies to general learning tasks beyond the traditionally

supervised and unsupervised, and can be extended to reinforcement learning. An extensive

study of model-free supervised and reinforcement learning architectures with examples of ana-

log VLSI systems is the subject of [the next chapter].

5 Systems

Several examples of adaptive and/or learning VLSI systems with applications in vision, speech,

signal processing, pattern recognition, communications, control and physics are included in the

references [170]-[202]. This list is by no means complete, and the spectrum of applications will

likely expand as the new application areas are discovered and research advances create new

ways of using adaptation and learning in the design of intelligent neuromorphic information

processing systems.

Covering such diverse range of disciplines across neurobiology, arti�cial intelligence, cogni-

tive science, information theory, etc., research on learning systems is bound to develop further

as di�erent concepts and experimental evidence combine to bridge the gap between bottom-up

and top-down modeling approaches, towards the engineering of truly intelligent autonomous

learning systems, and towards a better understanding of learning mechanisms in biological

neural systems at di�erent levels of abstraction.
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