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Robust Speech Feature Extraction by Growth
Transformation in Reproducing Kernel Hilbert Space
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Abstract—The performance of speech recognition systems de-
pends on consistent quality of the speech features across variable
environmental conditions encountered during training and eval-
uation. This paper presents a kernel-based nonlinear predictive
coding procedure that yields speech features which are robust
to nonstationary noise contaminating the speech signal. Features
maximally insensitive to additive noise are obtained by growth
transformation of regression functions that span a reproducing
kernel Hilbert space (RKHS). The features are normalized by
construction and extract information pertaining to higher-order
statistical correlations in the speech signal. Experiments with
the TI-DIGIT database demonstrate consistent robustness to
noise of varying statistics, yielding significant improvements in
digit recognition accuracy over identical models trained using
Mel-scale cepstral features and evaluated at noise levels between 0
and 30-dB signal-to-noise ratio.

Index Terms—Feature extraction, growth transforms, noise ro-
bustness, nonlinear signal processing, reproducing kernel Hilbert
Space, speaker verification.

1. INTRODUCTION

HILE most current speech recognizers give acceptable
Wrecognition accuracy for clean speech, their perfor-
mance degrades when subjected to noise present in practical
environments [1]. For instance, it has been observed that
additive white noise severely degrades the performance of
Mel-cepstra-based recognition systems [1], [2]. This perfor-
mance degradation has been attributed to unavoidable mismatch
between training and recognition conditions. Therefore, in lit-
erature, several approaches have been presented for alleviating
the effects of mismatch. These methods can be broadly catego-
rized as follows:

* noise estimation and filtering methods that reconditions the
speech signal based on noise characteristics [2];

* online model adaptation methods for reducing the effect of
mismatch in training and test environments [3];

¢ robust feature extraction methods [4], which includes tech-
niques based on human auditory modeling [5], [6].
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Fig. 1. Signal flow in KPCC feature extraction.

An excellent survey of techniques for improving perfor-
mance of speech recognition systems under noisy environments
can be found in [1]. This paper describes a novel feature ex-
traction algorithm based on nonlinear processing of the speech
signal. Termed kernel predictive coding cepstra (KPCC) [7],
the procedure consists of two key steps, as summarized in
Fig. 1: 1) estimation of a nonlinear function that captures robust
higher order statistics in a segment of speech signal and 2) map-
ping of nonlinear function parameters onto a computationally
tractable lower-dimensional manifold using growth transfor-
mations. Growth transformation is an iterative procedure for
optimizing homogeneous polynomial functions of probability
mass functions [13]. The technique has been used in discrimi-
native hidden Markov model (HMM) training using maximum
mutual information (MMI) [14], where it has been extended to
optimizing nonhomogeneous rational functions. In this paper,
estimation of nonlinear function is performed using regression
techniques over a reproducing kernel Hilbert space (RKHS)
[9]. RKHS regression have been extensively studied in the
context of regularization theory [11], support vector machines
[12], and for detection/estimation of covariance functionals
[10]. Combining RKHS regression with growth transformation
endows the proposed KPCC feature extraction algorithm with
the following robustness properties.

1) The algorithm uses a semiparametric function estimation
procedure without making any prior assumption on noise
statistics.

2) The algorithm uses kernel methods to extract features that
are nonlinear, thus utilizing higher-order statistical corre-
lations in speech which are robust to corruption by noise.

3) Robust parameter estimation is ensured by imposing
smoothness constraints based on regularization principles.

4) The features extracted are self-calibrated and normalized,
which reduces mismatch between training and testing
conditions.

In this paper, a step-by-step derivation of the KPCC algo-
rithm is described along with some of its mathematical proper-
ties (Sections II and III). In Section IV, robustness of the KPCC
algorithm is demonstrated by training a simple HMM-based rec-
ognizer and comparing the results with an equivalent system
trained on Mel frequency cepstral coefficient (MFCC)-based
features. Section V provides concluding remarks and with pos-
sible extensions of the KPCC algorithm.
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II. THEORY

The theory of the KPCC feature extraction algorithm uses
concepts from inner-product spaces, and in particular RKHS,
which for the sake of completeness, is described briefly in this
section. For detailed treatment of RKHS and its properties, the
readers are referred to [8], [9], and [20].

A. Kernel Regression

The first step in the KPCC feature extraction algorithm is a
nonlinear functional estimation procedure that extracts higher
order statistics from speech signals. Given a stationary discrete
time speech signal represented by z[n] € R, withn =1,..., N

denoting time indices, the aim of nonlinear regression step is to
estimate a function f : IR” — IR, that can predict z[n] based

on previous P samples z[n — 1],...,z[n — P — 1]. We will
use a vector notation to concisely represent previous P> samples
at time-instant n as x[n] = [z[n — 1],...,2[n — P — 1]]T.

The estimator function f will be assumed to be an element of a
Hilbert space f € H, where inner-product between two func-
tional elements f, g € H will be represented as (f, g)7. In the
estimation procedure that follows, we will employ topological
properties of Hilbert spaces for which readers are referred to 8]
for detailed analysis. Using the property of Hilbert spaces the es-
timator function f € H can be decomposed (Riez’s decomposi-
tion theorem [8]) into a weighted sum of countable orthonormal
basis functions ¢;(.) : R” — R,i € IN as

f(x[n]) = Zbidn (x[n]) M

with b; € IR. The orthonormal property of the basis functions
can be expressed as (¢;(.),#;(.))n = (1/A;);Vi = j and
equals zero otherwise. A; > 0 represents a parameter of the
inner-product operation. An example of a Hilbert space that ad-
mits such a decomposition is a discrete cosine transform (DCT)
where the orthogonal basis functions are ¢;(x) = cos(2'x)
defined at vector frequencies {2;. According to the decomposi-
tion given by (1), estimation of the function f is equivalent to
estimation of coefficients b; such that a reconstruction error be-
tween the input signal x[n] and its estimated value, computed
over a finite time window n = P + 1,..., N, is minimized. In
this paper, an Euclidean metric has been chosen for computing
reconstruction error as

N
i = — f(x[n]))?.
win Fe(f) _n=2213+1 (z[n] — f(x[n])) @)

Since the number of parameters b; in (1) is infinite, the min-
imization problem given by (2) is underspecified. Thus, any
function f will over-fit the time-series data and, hence, cap-
ture the unwanted high-frequency noise components. Smooth-
ness constraints are therefore imposed on the function f by aug-
menting the cost function in (2) using a regularization factor as

win C(f) = Al Il + Re(f)- 3)

The regularizer || f||3, will penalize large signal excursions by
constraining the functional norm, and thus will avoid overfitting
to the time-series data. This is equivalent to filtering with the aim
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of estimating smooth functions that can eliminate noise and at
the same time preserve salient speech recognition features. X in
(3) is a parameter that determines the tradeoff between recon-
struction error and the smoothness of the estimated regression
function f (also known as bias-variance tradeoff in estimation
theory). The regularizer can be reformulated in terms of param-
eters b; using orthonormal property of the basis functions ¢;(.)
as

1£117 = (. F)n @
= <Z bi¢i(-)7zbj¢j(-)> ®)
i=1 j=1 H
= Z bib; (di(.), i ()5 ©)
ij=1

S 1A )
=1

where linear property of inner-product operation (.,.)3; has
been used.
The optimization problem given by (3) can now be written as

mbfn )\Z b /A + Z (:v[n] - Z bih; (x[n]))
i=1 n=P+1 i=1

®)

The first-order condition for the optimization problem is ob-
tained by equating the derivative of (8) with respect to parameter
b; to zero which leads to

bi=A/A D angi (x[n]) ©9)

n=P+1

where «; represents regression coefficients, given by

an =xln] = Y bigi (x[n]) (10)
=1
=z[n] - f (x[n]) (11)

which is the reconstruction error for speech sample at time in-
stantn = P+1,..., N. The function f evaluated at any vector
y € IR can be written in terms of o, as

Z an Z Nigi (x[n]) ¢i(y)-

n=P+1 i=1

fly) = (12)

A brute force evaluation of (12) would require computation
of individual basis functions ¢;(.). However, several functions
of type K : IRY x RY — IR exist that can be expressed as

K(x,y) = ZAi¢i(x>¢i(y). (13)

Such functions have been extensively studied in literature in
the context of covariance kernels [10] but are commonly re-
ferred to as reproducing kernels [20]. The name comes from
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intrinsic property of space defined by K (also known as repro-
ducing kernel Hilbert space), that exhibits a unique reproducing
property as K(x,y) = (K(x,.), K(.,y))». Within the litera-
ture of covariance functions, the ¢;(.) are referred to as eigen-
functions with A; being the corresponding eigenvalues. Other
popular reproducing kernels have been extensively studied in
machine learning literature [12] which include polynomial ker-
nels K(x,y) = (x-y)";v = 1,2,..., and Gaussian kernels
K(x,y) = exp(—o(x —y) - (x — y)). Interested readers are
referred to [20] for exhaustive treatment of reproducing kernels
and RKHS. The function f(y) in (12) can now be written in
terms of kernel functions as

N
f3) = Y auK (xinl.y). (14)
n=P+1
The condition given by (11) can be written as
N
an = z[n] — Z am K (x[m], x[n]) (15)

m=P+1

which is a first-order condition for a kernel regression given in
a matrix-vector form as
W(a; K) = 1/22a” (K + M)a — o' X. (16)
with @ = {w, }, K representing the kernel matrix with elements
K,;; = K(x]i],x[j]), and X represents the time-series matrix
with row vector given by X; = x[¢ — 1]. Based on the first-order
condition given by (15), the solution is given by
=AM +K)™'X. (17)

Unfortunately, the regression coefficients a* estimated over
a window of size N — P time samples cannot be used directly
as recognition features because of the following.

1) The dimension of the regression vectors is equal to the

regression window size and thus is not scalable.

2) The regression function given by (14) is contained in high-
dimensional space and captures noise statistics within the
regression window. From (15), it follows that ) = z[n]—
f*(x[n]) where f*(x[n]) = ZZ=P+1 ol K(x[n],x[m]).
Therefore, the regression coefficients a* represent recon-
struction error including noise. Fig. 2(a) and (b) show a
colormap of regression coefficients computed over consec-
utive speech frames for utterances “zero” and “five.”

3) The regression coefficients «;, are not normalized, and
strongly depend on ambient conditions.

The next step in KPCC feature extraction procedure is to
project the regression function f(x) onto a low-dimensional
manifold, by capturing only the salient statistics of the regres-
sion function. This mapping is performed using a growth trans-
formation procedure which is described in the following section.

B. Kernel Parametrization and Growth Transformation

The second step in KPCC feature extraction algorithm is
mapping of nonlinear function f(x) onto a tractable low-di-
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Fig. 2. Colormaps depicting regression vectors « obtained for utterances of
(a) digit 0 and (b) digit 5. Predictive coefficient vector 8 for same (c) digit 0 and
(d) digit 5. Vertical axes denote the dimension of the vector, and horizontal axes
denote time-frames.

mensional manifold. This is achieved by parameterizing the
kernel function K(.,.) according to

K (x[n],x (Z Bix[n — i]z[m — ] + 7) (18)

where 1)(.) denotes any function that satisfies the RKHS proper-
ties given by (13). Examples of ¢(.) include exponential func-
tions ¢(.) = exp(.) or polynomial functions given by #(.) =
(),v=12...8=0,1i=1,...,P, and  represent pa-
rameters of the low-dimensional manifold onto which the re-
gression function f will be mapped. The parametrization en-
dows the kernel with the following properties.

* The kernel function K(.,.) and hence the cost function
W (a; K) in (16) is polynomial in .

* The kernel contains higher-order correlation terms of the
discrete signal z[n] and its delayed versions. In this sense,
the kernel expansion is similar to linear predictive coding
(LPC), where the coefficients [3; weigh the correlation
across samples at time lags ¢, although the relationship is
nonlinear through the map ¢ (-) in the kernel.

To ensure proper calibration, we will enforce normalization con-
straints on (3; > 0 as Zil B; = 1. The values of 3; will be
determined such that it can capture higher order statistical in-
formation embedded in the regression function f(x). For this
purpose, we will determine the normalized direction that leads
to maximum increase in the cost function W (ea; K) given in
(16). Maximization over the coefficients 3; will identify the di-
mensions in the input vector x that are least predictable, thereby
differentiating between noisy and systematic components in the
input.

To proceed with the maximization step of W (a; K) with re-

spect to 3, first note that the cost function W (a; K) is poly-
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nomial in normalized parameters ;. Thus, growth transforma-
tions can be applied for maximizing the cost function W (a; K).
Growth transformation was first introduced in [13] for opti-
mizing homogeneous polynomial functions defined on proba-
bility measures. In [14], the framework was extended to nonho-
mogenous polynomials with nonnegative coefficients. This for-
mulation has been extensively used for designing large-vocab-
ulary speech recognition systems based on maximum mutual
information. The key result in using growth transformation for
optimizing a polynomial cost function is the iterative map de-
scribed by the following theorem.

Theorem 1 (Gopalakrishnan et al.): Let H({P;;,}) be a poly-
nomial of degree d in variables P;; in domain D : P, >
0, % P =1,4i=1,...,N, k = 1,...,¢ such that

4 Pir(0H/OP;)(Pix) # 0, Vi. Define an iterative map
according to the following recursion:

ﬁik — P (%(Pik) + F)
v_i Pix (;Tfi(pi )+F)

19)

where I' > Sd(N + 1)?~" with S being the smallest coef-
ficient of the polynomial H({Pix}). Then {P;x} € D and
H{Pa)) > H({Pu}).

Using the growth transformations procedure described in [14]
over the manifold M : ). ; = 1, 8; > 0 the coefficients 3 are
remapped according to

B:0W (a*; K)/06; + D
2k (oW (a*; K) /0P + D)

Fig. 2(c) and (d) show a colormap of coefficients 8 computed
over consecutive speech frames for utterances “zero” and “five.”
The parameter D is a smoothing constant that determines the
degree of deviation of the new parameters with respect to the
old parameters and plays an important role in noise robustness.
Fig. 3 shows colormaps depicting kernel predictive coefficients
[ for an instance of utterance five, computed using different
values of D. The plot shows that lower values of D makes the
coefficients B sensitive to low-energy speech frames (fricatives
and silent frames), as evident from Fig. 3(a).

Insight into the role of the transformation (20) can be gained
through the following mathematical manipulation:

Bi —

(20)

oW(a*;K) 1

S S i Kol =i @
) ’ 2

= > apalm — iK' (,x[m])||  (22)
m H'

where K’ is the derivative of kernel K. For the kernels under
consideration, K’ also has a reproducing property over a corre-
sponding Hilbert space H'. For the specific choice K(x,y) =
exp((x,y)), both RKHS representations coincide H' = H and,
thus, the coefficients 3; in (20) are proportional to the norm of
the function h; € H where

N-P
hi(x)= Y afafm+ P —ilK (x,x[m+ P]).  (23)
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Fig. 3. Colormaps depicting predictive coefficient vectors 3 for utterance five
computed using different values of parameter D (a) D = 0, (b) D = 0.01,
(¢)D =1, and (d) D = 100. Vertical axes denote the dimension of the vector,
and horizontal axes denote time frames.

The function h;(x) represents sum of kernel functions (simi-
larity functions) evaluated between speech vectors x[m + P)]
and x, weighted by a factor obtained as a product of reconstruc-
tion error o, at time-instant m + P [see (11)] and the data
sample at a time lag ¢. Thus, the higher the correlation between
reconstruction error with data samples at time lag ¢, the higher
the norm of h; and hence the larger the value of [3;. As an inter-
esting limiting case, for A — oo and for a linear kernel of type
K(x[n],x[m]) = (Zle Bixz[n —i)z[m — i) + =), according to
(20), the coefficients 3; o< (3, x[m]z[m — i])? relate directly
to the Lo norm of the autocorrelation function. This affirms that
the transformation (20) subsumes linear predictive coding [16]
and produces more general, nonlinear features.

Each iteration of the map (20) increases the weight 3; corre-
sponding to the time delay 4 for which the signal value x[m — i
correlates strongly with the reconstruction error. Thus, any sub-
sequent iterations of (20) favors noisy coefficients and degrades
the performance of the features. Therefore, in this paper, the
KPCC feature extraction algorithm uses only a single iteration
of the map (20).

III. KPCC FEATURE EXTRACTION ALGORITHM

A formulation of KPCC feature extraction procedure consists
of a kernel regression step to estimate the regression vectors o*
followed by growth transformation steps to obtain KPCC coef-
ficients 3;. The feature extraction steps are illustrated in Fig. 1
and are described as follows.

1) Extract speech samples by shifting a rectangular window
of size N by W intervals; the values of N and W are
determined by the sampling frequency.

2) For a given order P, choose an initial value of parame-
ters 3;, 1 = 1,..., P. In the experiments described in
the paper, the initial values were chosen according to
the profile 5; = ¢ + hsin(in/P), akin to the liftering
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profile in Mel-scale filterbank cepstral coefficient fea-
ture extraction [16]. The initial value of 3; controls the
shape of the regression window and, hence, the form of
the regression function.

3) Obtain the kernel matrix K by applying the map exp(.)
to (18) over the data window. Train the dual objective
(16) by assigning optimal coefficients o according to
(17). The optimal coefficients directly determine the re-
gression function according to (14). Fig. 2(a) and (b)
shows an image plot of optimal coefficients for digits
0 and 5 sampled at 20 KHz.

4) Perform growth transformation (20) to obtain new esti-
mates of [3;, at the optimum value of o;.

5) Average and decimate the coefficients /[3; along
1t = 1,...P to reduce the number of features.
Fig. 2(c) and (d) shows the image plot of the pre-
diction coefficients (3; corresponding to digits 0 and 5.

6) Perform discrete-cosine transformation (DCT) on the re-
duced coefficients to obtain the final KPCC features. As
in MFCC feature extraction, the first DCT coefficient
and higher-order coefficients are discarded since they
carry little information relevant to speech.

A. Computational Complexity

Functional estimation step given by (17) and quadratic com-
putation step given by (22) are the computationally intensive
part of the KPCC feature extraction algorithm. However, sim-
ilar to linear-predictive feature extraction, KPCC feature extrac-
tion algorithm utilize the structure of the kernel matrix to ef-
ficiently solve (17). If stationarity of higher order speech fea-
tures is assumed, the kernel matrix exhibits a Toeplitz property
with K,,_, = K(x[i + m],x[i + n]),¥i. Under such condi-
tions, Yule—Walker recursions [16] can be used for solving (17).
When higher order stationarity cannot be assumed, similar to
LPC feature extraction auto-covariance like methods, for in-
stance Cholesky decompositions [17] can be used to solve (17).
Unfortunately, KPCC features require estimation of N — P re-
gression coefficients o, which makes the algorithm slower than
conventional LPC features that use low-order all-pole filters.
Quadratic computation, on the other hand, requires evaluation
of (22) for which several efficient implementation have been re-
ported [17]. Using these results, the complexity of the quadratic
computation step can be estimated to be approximately P(N —
P)log(N — P), which models evaluation of P predictive co-
efficients 3;, 7 = 1,..., P. Since the focus of this paper is to
introduce the KPCC feature extraction algorithm, we have re-
sorted to a brute force matrix inversion implementation. Sub-
sequent papers will elaborately discuss possible efficient algo-
rithmic implementation of KPCC feature extraction.

IV. EXPERIMENTS AND RESULTS

For all experiments, KPCC features were extracted using a
20-ms window shifted by 10 ms, with kernel regression order
P = 60, and withc = 0.3, h = 0.5, A = 0.5, D = 1, and
~v = 0.3. These parameter values were chosen based on several
recognition experiments that yielded superior performance. The
60 growth features 3; were averaged and decimated to 30 coef-
ficients. Without loss of generalization, it has been assumed that
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Fig. 4. KPCC predictive coefficients for digits 0—4 corresponding to three dif-
ferent speakers. The feature maps in (a) and (b) correspond to the same speaker,
whereas (c) and (d) correspond to different speakers.
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Fig. 5. KPCC predictive coefficients for digits 5-9 corresponding to three
different speakers. The feature maps in columns (a) and (b) belong to the
same speaker, whereas feature maps in columns (c) and (d) belong to different
speakers.

the input signal is rescaled such that z:[n] < 1,Vn. Fig. 4 com-
pares the KPCC predictive coefficients for digits 0-4 spoken by
three different speakers. The first two columns correspond to the
same speaker. Similarly, Fig. 5 compares the KPCC spectrum
for digits 5-9. A visual inspection of Figs. 4 and 5 show that
the KPCC features corresponding to the same digit bears simi-
larity across different speakers. This provides motivation for in-
tegrating KPCC features with inference models to build speech
recognition systems.

For comparison, MFCC-based features [16] were chosen.
After DCT, 12 coefficients (indices 2-13) were selected as
features for the recognition system. Fig. 6 shows a sample
comparison between KPCC features and corresponding MFCC
features for digit five obtained before DCT operation for
different signal-to-noise ratio (SNR) levels. As standard in
MFCC [18], a window size of 25 ms with an overlap of 10 ms
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Fig. 6. (a)—(c) MFCC features and (d)—(f) KPCC features for digit five obtained
before DCT, under different SNR conditions (clean, 30 dB, and 10 dB).

was chosen, and cepstral features were obtained from DCT
of log-energy over 24 Mel-scale filter banks. The degradation
of spectral features for MFCC in the presence of white noise
is evident, whereas KPCC features prevail at elevated noise
levels.

For recognition experiments, we chose a simple isolated
TI-DIGIT digit recognition task with a vocabulary size of 11
(zero to ten plus “O”). The training set contained two utterances
of isolated digits each from 35 male speakers comprising a total
of 770 utterances, and the test set contained isolated digits from
25 other male speakers for a total of 440 utterances. A recog-
nition system was developed using the Hidden Markov Toolkit
(HTK) [18], implementing a 14-state left-to-right transition
model for each digit, where the probability distribution on each
state was modeled as a four-mixture Gaussian. As a baseline,
the same recognition system was developed using MFCC
features comprising of 12 coefficients, without energy and delta
features. The performance of MFCC and KPCC features were
compared when speech signal was corrupted by additive noise
during recognition conditions. It was assumed that the channel
characteristics based on room impulse response remained fixed
between training and testing conditions. In Section V, we
discuss possible ways to embed robustness in KPCC features
to channel variations.

Noise samples for the experiments were obtained from
the NOISEX database [19] which are recorded sound clips in
real-life environments (NOISE-ROM-0 from NATO:AC243/
Panel3/RSG-10). The noise clippings were added to clean
speech obtained from TIDIGIT database to generate test data.
For these experiments, it was assumed that the channel char-
acteristics based on room impulse response remained fixed
between training and testing conditions. We considered four
types of noise common in application environments: white
noise (W), speech babble noise (B, cafeteria noise), factory
noise (F, plate-cutting and electrical welding equipment), car
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interior noise (C, Volvo 340 at 75 mi/h under rainy conditions)
and airplane cockpit noise (4, jet moving at 190 Kmi/h at
1000 feet and sound level 109 dBA). Figs. 7-11 summarizes
the recognition rates obtained based on the two features under
different noise statistics and SNR levels.

The following can be inferred from the plots.

1) For clean speech, the performance of both systems are
comparable, with high recognition rates.

2) For white noise the recognition system with KPCC fea-
tures demonstrates much better noise robustness than cor-
responding MFCC features. In fact, KPCC maintains ac-
ceptable (>90%) recognition performance for noise ap-
proaching signal levels (SNR reaching 10 dB).

3) KPCC features demonstrate significantly better perfor-
mance in the presence of factory noise and slightly better
performance in the presence of babble noise. An interesting
observation can be made at this point by noting the trend in
recognition rates for babble noise in comparison with other
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noise types. Babble noise primarily consists of speech sig-
nals produced by other humans and hence not only corrupts
the entire information bearing frequency bands but also
shares statistical properties of the reference signal. This at-
tribute is reflected by a reduction in error rates even though
KPCC features are more robust to MFCC features. For other
sources of noise, the statistics are substantially different
from reference statistics, which KPCC features utilize to
extract noise robust features. This can be observed espe-
cially for white noise at very low SNR, for which KPCC
features provide reasonable recognition performance.

4) The performance of both MFCC features and KPCC fea-
tures do not degrade rapidly in the presence of car noise and
yield similar relative decrease in recognition rates. This
can be attributed to the very low-frequency nature of car
noise, which keeps the higher frequency features intact for
recognition purposes. Also, the baseline performance of
the recognizer using MFCC features is better than the rec-
ognizer trained with KPCC features, which introduces a
fixed offset in recognition performance as shown in Fig. 10.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented a novel speech feature extraction
procedure robust to noise with different statistics, for deploy-
ment with recognition systems operating under a wide variety
of conditions. The approach is primarily data driven and effec-
tively extracts nonlinear features of speech that are largely in-
variant to noise and interference with varying statistics.

An extension of the proposed work is to evaluate the features
for a task of speaker verification. As can be seen in Figs. 4 and
5, the KPCC predictive coefficients bear more similarity for the
same speakers as opposed to nonidentical speakers. The theory
of KPCC features can be extended by linking growth trans-
formation on regression functions with game theoretic princi-
ples in machine learning. The regression function estimation
and growth transformation can be viewed as balancing criteria
on optimizing the dual objective function (16). In this paper, a
single iteration between the criterion was used to identify the
robust features. One of the disadvantages of single iteration is
the dominance of the stronger features over weak features. In
principle, multiple iterations between the balancing criterions
could be used to identify the weak features and could be used to
improve the recognition accuracy of the system.

Another extension to this work is to design KPCC features
that are robust to channel variations, a property which is natu-
rally endowed in MFCC features due to cepstral-based signal
processing [16]. Cepstral filtering techniques for extracting
MFCC features assume that the channel variations can be
modeled using a linear time-invariant filter that modifies the
spectrum of the speech signal. It was shown using an example
in Section II that KPCC regression procedure is equivalent to a
filtering operation, where the shape of the filter is determined
by a choice of the kernel function. Therefore, specific kernel
functions can be used for constructing regression function
which acts as a matched filter for reducing channel effects. In
our future work, we will explore possibility of kernels with a
bandpass filter response for eliminating slow-varying channel
components, similar to RASTA-based methods [6].
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