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Analog VLSI Biophysical Neurons and Synapses
With Programmable Membrane Channel Kinetics

Theodore Yu, Student Member, IEEE, and Gert Cauwenberghs, Senior Member, IEEE

Abstract—We present and characterize an analog VLSI network
of 4 spiking neurons and 12 conductance-based synapses, imple-
menting a silicon model of biophysical membrane dynamics and
detailed channel kinetics in 384 digitally programmable parame-
ters. Each neuron in the analog VLSI chip (NeuroDyn) implements
generalized Hodgkin-Huxley neural dynamics in 3 channel vari-
ables, each with 16 parameters defining channel conductance,
reversal potential, and voltage-dependence profile of the channel
kinetics. Likewise, 12 synaptic channel variables implement a
rate-based first-order kinetic model of neurotransmitter and
receptor dynamics, accounting for NMDA and non-NMDA type
chemical synapses. The biophysical origin of all 384 parameters in
24 channel variables supports direct interpretation of the results
of adapting/tuning the parameters in terms of neurobiology. We
present experimental results from the chip characterizing single
neuron dynamics, single synapse dynamics, and multi-neuron
network dynamics showing phase-locking behavior as a function
of synaptic coupling strength. Uniform temporal scaling of the
dynamics of membrane and gating variables is demonstrated by
tuning a single current parameter, yielding variable speed output
exceeding real time. The 0.5 pm CMOS chip measures 3 mm X
3 mm, and consumes 1.29 mW.

Index Terms—Neuromorphic engineering, reconfigurable
neural and synaptic dynamics, silicon neurons, subthreshold
metal-oxide semiconductor (MOS), translinear circuits.

1. INTRODUCTION

EUROMORPHIC engineering [1] takes inspiration from
N neurobiology in the design of artificial neural systems in
silicon integrated circuits (ICs), based on the function and struc-
tural organization of biological nervous systems. By emulating
the form and architecture of biological systems, neuromorphic
engineering seeks to emulate their function as well. Since the
first silicon model of a biophysical neuron in 1990 [2], great ad-
vances have been made in the detail and scale of the modeling
the neural function in silicon. Recently, the focus of the neu-
romorphic engineering effort in silicon modeling of the nervous
system has shifted from the sensory periphery to central nervous
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Fig. 1. Anion membrane channel is pictured [13] (top) with an accompanying
mathematical expression (bottom) describing the channel kinetics in terms of
the opening « and closing 3 rates.

function addressing higher levels of integration and cognitive
processing in the cortex and other brain regions [3]-[6], setting
the stage for further advances toward closed-loop integration of
biological and silicon neural systems [8]-[12].

Biophysical modeling and implementation of the neural func-
tion require a careful account of channel opening and closing
kinetics and their role in ion transport through membranes that
give rise to the rich neuronal and synaptic dynamics observed
in neurobiology [13] (Fig. 1). Hodgkin and Huxley’s seminal
work in the investigation and formalization of neuron membrane
dynamics have long been the standard of biophysical accuracy
[14]. The difficulty of realizing the complex functional form
of the Hodgkin—Huxley membrane currents and channel vari-
ables in analog circuits has motivated alternative realizations
by simplifications in the model [15]-[18]. The prevailing ap-
proach in neuromorphic engineering design has been to abstract
the neuron membrane action potential to discrete-time spike
events in simplified models that capture the essence of integrate-
and-fire dynamics and synaptic coupling between large numbers
of neurons in an address-event representation [ 19]—[25]. The ad-
vantage of these approaches is that they support event-based
interchip communication, including direct input from neuro-
morphic audition [26] and vision [27] sensors, and may lead
to highly efficient and densely integrated implementations in
analog very-large scale integrated (VLSI) silicon [28], [29].

Here, we offer an alternative neuromorphic engineering
approach that targets applications where biophysical detail in
modeling neural and synaptic dynamics at the level of channel
kinetics is critical. Examples of these applications include
modeling of the effect of neuromodulators, neurotoxins, as
well as neurodegenerative diseases on neural and synaptic
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function through parameter changes in the channel kinetics. For
these and other applications in computational neuroscience,
a direct correspondence between the parameters governing
the biophysics of neural and synaptic function and those in
the implemented computational model is greatly beneficial
[30]-[33]. The approach we propose here is the first in analog
VLSI to fully model the general voltage dependence of rate
kinetics in the opening and closing of membrane ion chan-
nels. We illustrate this approach with the implementation and
demonstration of NeuroDyn, an analog VLSI network of four
neurons and 12 chemical synapses with a total of 384 digitally
programmable parameters governing the channel conductance,
reversal potential, and opening and closing kinetics voltage
profile of 24 individually configurable channel variables.

Hodgkin and Huxley in their landmark paper [14] resorted
to heuristics in curve-fitting the rate kinetics of channel vari-
ables observed through ingenious measurements on the squid
giant axon. Any model replicating the precise functional form
of this heuristic fit would, at best, produce an approximation
to squid giant axons. To a large extent, the variety in dynamics
between different neuron types in different organisms as well
as the anomalies due to biomolecular agents and neurodegen-
erative processes acting on membrane channels arise from the
resulting differences in channel properties. These channel prop-
erties are compactly characterized in our model by 16 (7 +
7 4+ 1 4+ 1) parameters for each channel variable specifying
the voltage dependence of channel opening and closing rates
(seven regression points each), besides values for the channel
conductance and reversal potential. Fewer parameters would
impair the flexibility in modeling neural and synaptic diversity
in healthy and diseased nervous systems, although fewer pa-
rameters would be appropriate in special purpose implementa-
tions of specific model instances and their functional abstrac-
tions [34]-[38] where the application warrants efficiency rather
than flexibility and biophysical explanatory power in parameter
selections. Likewise, extensions to the models to incorporate
further biophysical detail, such as short-term synaptic adapta-
tion [39]-[42] and multicompartmental dynamics through linear
[43] and nonlinear [44] dendritic coupling would incur larger
numbers of parameters where the need for the extended models
justifies the increase in implementation complexity.

While the implementation of parameterized channel kinetic
rate equations in NeuroDyn provides the capacity to model a
large variety of neuron and synapse behaviors, it requires tuning
over a large number of parameters. Since each of these pa-
rameters has a direct physical correspondence in channel ki-
netics and membrane dynamics, values for these parameters can
be obtained from physical considerations and measurements.
Fine tuning of these parameters, to account for uncertainties
in the modeling as well as imprecisions in the implemented
model, would still be desirable. Extensive parameter fine-tuning
was found to be unnecessary to address transistor mismatch. A
simple calibration and parameter fitting procedure proved ade-
quate to counteract mismatch and nonlinearities in setting pa-
rameters in the biophysical model to desired values. The cor-
respondence between biophysical and circuit parameters is de-
scribed in Section IV, with experimental alignment documented
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Fig. 2. NeuroDyn chip micrograph. (a, top left) and system diagram (b,
top right). Four neurons are interconnected with 12 synapses, each with
programmable channel kinetics, conductances, and reversal potentials (see
Table I).

in Section V and the parameter alignment procedure detailed in
Appendix B.

In the present implementation, we have aimed for functional
flexibility and real-time control over parameters and internal
dynamics, rather than efficiency and density of integration.
The NeuroDyn system interfaces through the universal serial
bus (USB) to Matlab software on a workstation to update the
384 parameters in rea time, and to continuously control and
observe each of the four membrane potentials and 24 channel
variables. To support this level of programmability, all parame-
ters are stored locally on-chip in digital registers interfacing to
a bank of 384 current multiplying digital-to-analog converters
(DACs). The neuromorphic modeling approach presented here
is extendable to other implementations where parameters may
be shared across individual neurons and/or channels for greater
efficiency, and combined with floating-gate nonvolatile analog
storage [45]-[51] or dynamically refreshed volatile analog
storage [52] of the parameters for greater density of integration.
For example, central pattern generators require only a few
neurons for implementation, yet they can characterize complex
behavior [11].

We envisage NeuroDyn as an enabling tool for computational
and systems neuroscience, since all internal dynamical variables
and their parameters are grounded in the biophysics of mem-
branes and ion channels. With its analog interface to the phys-
ical world, the NeuroDyn chip (Fig. 2) may also serve as an elec-
tronic training tool for budding neuroscientists and neurobiolo-
gists to practice patch clamp recording and other experimental
techniques on “virtual” neurons. The NeuroDyn system contains
various analog and digital exposed probes in the circuit board
that allow for a real-time interface to the internal membrane po-
tential and channel dynamics.

Furthermore, the low-power and efficient circuit implemen-
tation, combined with extensions for hardcoded parameter set-
tings or high-density analog storage, support applications of the
device as an implantable computational neural interface in vivo.
These approaches, as described in [7], have great potential in the
realization of intelligent neural prostheses when combined with
embedded signal processing to process incoming neural spike
data streams [8], [9] and activate prostheses [10], [12].

The analog VLSI design of the NeuroDyn system, and prelim-
inary experimental results were presented in [53]. First results
on coupled neural dynamics with inhibitory synapses were re-
ported in [54]. Here, we provide details on the circuit implemen-
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TABLE I
NEURODYN DAC PARAMETERS

Neurons V;:
an, (V) Brn; (V) gNa; ENna;
am,; (V) Brm; (V) gK; Eg,
ap, (V) Br; (V) gL, Er,
4x3x7* 4x3x7* 4x3 4x3
Synapses s;;:
Olr.;j (Vpre) ﬁrij (Vpost) gsynij Esynij
12x7%* 12x7% 12 12

*All rates «v, 3 are functions of voltage as 7-point sigmoidal splines
(Section IV-A-1).

tation and complete experimental characterization of the neural
and synaptic circuits, and present calibration and parameter-fit-
ting procedures to align neural and synaptic characteristics from
models or recorded data onto the digitally programmable analog
hardware. We demonstrate the operation of the system by repli-
cating opening and closing rates, gating variable kinetics, and
action potentials of the Hodgkin—Huxley model, and study the
dynamics of a network of two neurons coupled through recip-
rocal inhibitory synapses.

II. NEURODYN ARCHITECTURE

A. System Overview

The NeuroDyn board consists of four Hodgkin—Huxley (HH)-
based neurons fully connected through 12 conductance-based
synapses as shown in Fig. 2(b). All parameters are individually
addressable and individually programmable and are biophysi-
cally based governing the conductances, reversal potentials, and
voltage dependence of the channel kinetics. There are a total
of 384 programmable parameters governing the dynamics as
shown in Table I. Each parameter is stored on-chip in a 10-b
DAC.

B. Chip Architecture

The NeuroDyn chip is organized into four quadrants with
each quadrant containing one neuron, and three synaptic inputs
from the other neurons. Each neural and synaptic membrane
channel current follows the same general form as illustrated in
Fig. 3. Each channel current is a product of a conductance term
modulated by a product of gating variables and the difference
between the membrane voltage and reverse potential as in (2).
The similar form for the neuron channel currents and synaptic
current allows for a small number of circuits to model each com-
ponent of the channel current.

III. BIOPHYSICAL MODELS

A. Membrane Dynamics

The HH membrane dynamics [14], including conductance-
based synaptic input, are described by

dvi
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dt
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Fig. 3. System diagram for one of the four neurons in the NeuroDyn chip.

where 7,5 = 0...3, and

INai :mighig]\rai (V; — ENai)
I, =ni*gr, (Vi — Ex,)
Ir, =91, (Vi - EL,)

Isyni]- =Tij9syn,; (‘/1 - Esy'n,ij) . (2)

All of the conductances in the model, including the synaptic
conductances gy, ; , are positive. Excitatory synapses are char-
acterized by reversal potentials E,,,,. above the rest potential,
whereas for inhibitory synapses, the reversal potential Fyy,, ; is
below the rest potential.

B. Channel Kinetics

The neuron channel gating variables n;, m;, and h;, as in the
HH neuron formulation, are modeled by a rate-based first-order
approximation to the kinetics governing the random opening
and closing of membrane channels

T — (1= 1) = i @)
dgi — (1 = m2) = By @)
dh;

d; =an, (1= hi) — Bu,hi )

where the three channel variables n;, m;, and h; for each neuron
1 denote the fractions of corresponding channel gates in the open
state, and where the « and 3 parameters are the corresponding
voltage-dependent opening and closing rates.

Similarly, the synaptic channel currents are modeled by using
first-order kinetics in the receptor variables r;;, the fraction of
receptors in the open state [55]

% = Qp; (1- T’ij) - /H”'ij Tij- (6)
The opening rates ., are dependent on presynaptic voltage
V;, modeling the release of the neurotransmitter and its binding
at the postsynaptic receptor, affecting the channel opening. In
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Fig. 4. Generalized channel rate variables o and /3 implemented in the current
domain with additive seven-point sigmoidal functions. Programmable parame-
ters scaling the sigmoidal currents are stored in 10-b MOSFET-only R-2R DACs
with additional bit governing polarity.

contrast, the closing rates 3,,, are generally dependent on post-
synaptic voltage V;. For non-NMDA synapses, this dependence
is a constant, given the rate of unbinding and resulting decrease
in the channel conductance following presynaptic deactivation.
For NMDA synapses, this dependence models the effect of mag-
nesium blocking of synaptic conductance triggered by postsy-
naptic potential.

The point of departure from the prevailing models in compu-
tational neuroscience is that the channel gate/receptor opening
and closing rates are not specified and implemented as ana-
Iytic functions, but are parameterized as regression functions,
leaving significant flexibility in accommodating diversity in
channel properties in the implemented model.

IV. NEUROMORPHIC IMPLEMENTATION AND
CHARACTERIZATION

A. Voltage-Dependent Channel Kinetics

1) Seven-Point Sigmoidal Spline Regression: Opening rates
« and closing rates (§ are modeled and regressed as 7-point
additive spline sigmoidal functions implemented in the circuit
illustrated in Fig. 4. Each sigmoid in the regression spline
is implemented by a simple differential pair of metal-oxide
semiconductor (MOS) transistors operating in subthreshold,
where a bias current scales the sigmoid while a bias voltage
determines the sigmoid offset [1]. These bias voltages are
linearly spaced and are set through a voltage divider resistor
string. A programmable 10-b metal-oxide semiconductor
field-effect transistor (MOSFET)-only R-2R digital-to-analog
converter (DAC) supplies the bias currents. An additional sign
bit controls a switch circuit that determines the polarity of the
output current slope, which selects either monotonically in-
creasing or monotonically decreasing voltage dependence. The
output currents from each differential pair are then additively
combined to provide the composite function for the opening or
closing rate. Each of the spline amplitudes and sign selection
bits are individually programmable. By properly setting the
current bias values and sign bit for each of the seven sigmoidal

functions, the summation can accommodate a wide range of
functions approximating typical rate functions « and §

7 7
Ly,
Tout(V) =D Tl (V) =) T+ o= e D
k=1

k=1

where the output current /,,; denotes either one of the I, and
1 rates, and where Vp = kT/q is the thermal voltage.

To enforce a consistent temporal scale of the dynamics across
membrane and gating variables, the currents implementing the
opening and closing rates as well as the membrane conductances
are globally scaled with a current I that drives the multiplying

DACs

I, =al, ®)
I/i :/BIT (9)
I, =gl (10)

and, thus, uniformly controls the time base of all dynamic vari-
ables with a global temporal scale parameter 7 = CVr /1.

2) Programmable Channel Kinetics: The gate opening and
closing variables for one neuron were programmed to imple-
ment the HH model (Section III), with the target functions for
the channel kinetics defined according to the HH opening and
closing rate functions. The sigmoidal spline functions were
measured from the chip to provide the basis functions at each
spline location. Rectified linear least-squares optimization was
then applied to determine the current bias parameters based
on chip characteristics. Further parameter fitting details are
provided in Appendix B. The 10-b programming for each of the
seven spline amplitude levels in the regression functions results
in the fit illustrated in Fig. 5. The closeness of fit is limited by
the dynamic range of the 10-b DACs to simultaneously fit the
steep slope of the m g gating variable and the gradual slopes
of the h, and ng parameters. Parameter fitting was achieved
by applying rectified linear regression and iterative linear
least-squares residue correction as described in Appendix B.

B. Gated Conductances

Gating variables m;, h;, n;, and r;; are implemented as cur-
rents by the log-domain circuit shown in Fig. 6, which imple-
ments the kinetics (3)—(6) as

d Iout Iout Iout
CVp— =1, (1- -T
Tdt I,z ( I, f> O Tres

Y

where I, represents the gating variable output current, and
where I,.f is a current reference that only affects the amplitude
scale of the gating variables, but not the temporal scale of their
dynamics.

The use of MOS transistors operating in the subthreshold re-
gion allows analog multiplication through the exponential rela-
tionship between the transistor input voltage and output current
in translinear circuits [56]. The addition of the capacitor trans-
forms the circuit from a translinear multiplier into a log-domain
filter [59] that implements the desired first-order dynamics. The
derivation is provided in Appendix A.
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Fig. 5. Target and measured channel opening and closing rates o and 3 for
gating variables n, m, and h of a single NeuroDyn neuron approximating the
HH model, obtained by fitting the on-chip programmed parameters to the HH
model.

The circuit is similar in implementation complexity to a pre-
vious implementation of rate kinetics [33] but avoids the back-
gate effect in the bulk CMOS process on the linearity in the
first-order dynamics, and provides full programmability in the
voltage profile of the dynamics. The circuit offers 14 parame-
ters, specifying the detailed voltage dependence of the opening
and closing rates offering flexibility in accurately modeling the
channel kinetics.

1) Steady-State (in)Activation Functions: The steady-state
(in)activation functions for one NeuroDyn programmed to repli-
cate the HH model are shown in Fig. 7. These data were gath-
ered by clamping the membrane voltage and slowly sweeping
the membrane voltage while recording the values for the m, h,
and n gating variables. The results closely match the expected
steady-state values according to the HH model [14]. Notice that
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Fig. 7. Steady-state (in)activation functions measured on one neuron of Neu-
roDyn programmed to replicate the HH model (a) for fast setting of the neuron
parameters and (b) for slow setting of the parameters, obtained without recali-
bration by increasing the global temporal scale parameter [, 2.5-fold.

there is little variation between the fast and slow time-scale im-
plementations obtained by varying the global temporal scale pa-
rameter /. This desirable time independence in the steady state
(in)activation functions is clearly reflected in Fig. 7.

2) Voltage-Dependent Time Constants: The measured
voltage-dependent time constants of the implemented HH
model are shown in Fig. 8. The time constants were estimated
by averaging the measured rise and fall times of changes in
the gating variables under alternating small-amplitude voltage
steps around the swept membrane voltage. The observed dy-
namics are consistent with the HH model [14] except for the
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Fig. 8. Voltage-dependent time constants measured for one NeuroDyn neuron
approximating the HH model.

larger observed time constants of the m gating variable due to
delays imposed by the on-chip output buffers.

C. Translinear Multiplier

A translinear multiplier shown in Fig. 9 implements gating
of the membrane conductances with the gating variables. A
translinear multiplier exploits the zero sum of voltages along a
loop to implement a multiplication of current sources [57] and

[56]

< I m >3 1 h

=1, (=
1, ref 1, ref

where I, is the same current reference controlling the ampli-
tude of the gating variables (11) for dimensionless operation.
Similar translinear circuits implement the other gated conduc-
tances of the form z® with a + 1 stages, where z = n and
a = 4 for the K+ channel; and z = r and ¢ = 1 for the conduc-
tance-based synapses.

1) Channel Conductance Dynamics: The channel conduc-
tance dynamics of an implemented HH model are shown in
Fig. 10. The membrane voltage was clamped to the specified
voltage levels and then released to measure the conductance dy-
namics for the Na+ and K+ channels. The results for the Na+
channel show an increase in the magnitude and speed (as seen
in the width of the curve) of the curve proportional to the mag-
nitude of the depolarizing voltage step. The results for the K+
channel also reflect an increase in magnitude and slope propor-
tional to the magnitude of the depolarizing voltage step.

I

(12)

3h gna

D. Membrane Dynamics

Each membrane conductance is implemented by a differential
transconductance amplifier, linearized through shunting in the
differential pairs for wide dynamic range in subthreshold MOS
operation [58]. Unity gain connection of the amplifier yields a
membrane current
13)

K
Ina = —Tnsn gus (Vin — Ena)-

Vin

For each of the membrane conductances, one amplifier is con-
nected in parallel as shown in Fig. 11. A capacitance Cp e, = C
on the membrane node realizes the membrane dynamics (1).

V. EXPERIMENTAL RESULTS

A. Neuron Spiking Dynamics

We observed the dynamics of the membrane and gating vari-
ables for one neuron programmed to implement the HH model.
We also demonstrated temporal control through the variation of
the global temporal scale parameter set by current I. As shown
in Fig. 12, the variation of I scales the time axis of the wave-
forms by a factor greater than 2. The amplitude scaling in the
gating parameters reflects scaling proportional to I, consistent
with (8)—(10). We implemented the HH model in one neuron and
observed the dynamics of the membrane and gating variables as
shown in Fig. 12. A small, constant . is applied to the neuron
in order to provide dc input inducing spiking dynamics.

B. Synapse Dynamics

To observe the synapse dynamics, we took the spiking HH
neuron from before and connected that as a presynaptic input
to a synapse. The synapse parameters were configured to im-
plement a GAB A 4 inhibitory synapse. The configuration is il-
lustrated in Fig. 13(a). The conductance curves of the synapse
are shown in Fig. 13(b). The synapse conductance curve was ob-
served to rise quickly in time with the spiking neuron and slowly
decay in accordance with the expected behavior.

C. Neuron Network Dynamics

We chose to demonstrate synaptic dynamics using a simple
network of two neurons coupled with reciprocal inhibitory
synapses as illustrated in Fig. 14. The neuron parameters were
configured to implement the channel kinetic rate equations of
the HH model. The synapse parameters were configured to
implement GABA, inhibitory synapses. The network was
first initialized by disconnecting all of the synaptic connections
by setting each synaptic conductance to zero. Then, separate
external currents loxt1 and oo Were applied to the neurons V;
and V5, respectively, to induce spiking behavior. The values for
1«1 and I.4¢> were chosen so that there was a small difference
in the spiking frequency between the two neurons. Then, the
synaptic conductances were increased until coupling was ob-
served between the neurons, in the form of phase-locking. The
resulting waveforms are shown in Fig. 15. Notice that especially
in the oscilloscope capture from the coupled neurons, that there
is observable timing jitter in the spiking neuron waveforms.
This phase noise is primarily due to the noise intrinsic in the
analog circuit implementation. Noise has also been observed
in in vivo recordings of neuronal activity that can be attributed
to thermal, stochastic, and other sources [60]. Thus, the noise
from the circuit implementation may prove advantageous to
provide a more biorealistic implementation.

VI. CONCLUSION

We presented an analog VLSI network of biophysical neu-
rons and synapses that implements general detailed models of
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Fig. 10. Channel conductance dynamics measured from one NeuroDyn neuron
approximating the HH model. (a) for the Na+ channel and (b) for the K+
channel. Channel conductance was measured for different depolarizing voltage
steps away from the resting potential.

continuous-time membrane dynamics and channel kinetics in
a fully digitally programmable and reconfigurable interface.
Each neuron and synapse in the network offer individually
programmable parameters setting reversal potentials, conduc-
tances, and voltage-dependent channel opening and closing
rates. Least squares parameter fitting was shown to accurately
reproduce biophysical neural data of channel opening and
closing rates, gating variable dynamics, and action potentials.
We further observed coupled neural spiking dynamics in a
network with inhibitory synapses.

The implemented neural model extends on the HH formu-
lation by allowing for arbitrary voltage profiles for channel

L\'a [synﬂ

]

¥
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Fig. 11. Transconductance-C circuit implementing membrane dynamics for
one neuron with synaptic input from the other three neurons.
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opening and closing rates. The approach can be further extended
by using similar principles to include adaptation mechanisms
using calcium dynamics, and to implement resistively coupled
multicompartment neurons. The work shown here represents
a first step toward detailed silicon modeling of general neural
and synaptic dynamics, combining digital and analog VLSI for
maximum configurability and functionality.

APPENDIX A
DERIVATION OF THE CIRCUIT IMPLEMENTING KINETICS OF
CHANNEL GATING VARIABLES

Here, we derive the dynamics of the circuit in Fig. 6 by im-
plementing the kinetics in the channel gating variables by com-
bining the « and [ rate currents. The log-domain circuit [59]
uses the dynamic translinear principle, exploiting the exponen-
tial current-voltage dependence of MOS transistors operating
in the subthreshold region [56]. Drain currents are modeled as
1, = IyW/ L exp((kV,—V;)/Vr) in gate voltage V;, and source
voltage Vj relative to the bulk, where V7 is the thermal voltage,
kT/q and « is the bulk back-gate effect factor [57]. The re-
sulting translinear loop relation Ins, Ipr, = Ipg, Ins, combined
with Kirchhoff’s current law leads to

d
IaITef = <Ia + Iﬂ + C%(I/?) - Vvl)) Iout- (14)
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Fig. 12. Measured dynamics of membrane voltage V,,, and gating variables
n, m, and h for a single HH neuron. (a) and (b) show the effect of setting
the global temporal scale parameter I, uniformly speeding or slowing the dy-
namics across all variables.
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Fig. 13. (a) Synapse with presynaptic spiking neuron diagram (above). (b) Os-
cilloscope trace of the conductance curve of a synapse with a spiking presynaptic
neuron input. Notice that the spiking neuron waveform (purple) and conduc-
tance curves for the synapse (pink) are in phase (below).

Since Iout/Iref = IM4 /IM3 = exp(n(V}, — Vl)/VT), the
voltage dynamics of V3 — V; in (14) are expressed in the current
log domain as

Al _ nd
dt Loy  Vrdt

Iout
I’ref

(Vs = V1) (15)

leading to (11).
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Fig. 14. Coupled neurons diagram. Two spiking neurons are connected with
inhibitory synapses.

APPENDIX B
CALIBRATION PROCEDURE FOR o AND 3 PARAMETER FITTING

A. Rectified Linear Regression

Let Ieas(V, Ip1, - . ., Iy7) be the measured « or (3 function
of V obtained with current bias parameter settings Ip1, . .., Ip7.
Then, for calibration, we measure the individual sigmoid con-
tributions

Ia,k(V) = Imeas(‘/v 6k17-'-75k7) (16)

where 0;; = 1 for k = j, and 0 otherwise. Hence, because of
linearity in current summation, we may assume

7
Leas(Vo It - Ioz) =Y T Io 1 (V). (17)
k=1

To proceed, we perform a first linear fit of I'ineas(V, Ip1, - - -, In7)
to the target function Itarget(V) by using rectified linear least-
squares regression in the coefficients I

7
: Z ZIkaa,k(V) - Itarget(V)
1

14 k=

2

min
Ip1,.. s 15720

(18)

The rectification is necessary because of the positivity con-
straints on the bias current parameters.

B. Iterative Linear Least-Squares Residue Correction

Next, we correct for residual errors due to nonlinearities in
the current multiplying DACs by implementing the sigmoid
weighting (17). To do so, we linearize the system around the
current operating point, by regressing the residue to locally
differential sigmoid contributions
AL (V) = Lneas(V, Ip1 + €bk1, - .., Iy7 + €br7)

_Imeas(V7 Ib17 s 7Ib7)

where ¢ is chosen sufficiently small for the linear analysis to be
valid, but sufficiently large for reliable measurement. We pro-
ceed with another round of rectified linear least-squares regres-
sion in the parameters I;1, + Al subject to the same positivity
constraints, and iterate until the changes in parameter values
ATy, are small compared to the DAC precision.
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