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Abstract—An architecture is described for the microelectronic
implementation of arbitrary outer-product learning rules in ana-
log floating-gate CMOS matrix—vector multiplier networks. The
weights are stored permanently on floating gates and are updated
under uniform UV illumination with a general incremental analog
four-quadrant outer-product learning scheme, performed locally
on-chip by a single transistor per matrix element on average.
From the mechanism of floating gate relaxation under UV radi-
ation, we derive the learning parameters and their dependence
on the illumination level and circuit parameters. It is shown that
the weight increments consist of two parts: one term contains
the outer product of two externally applied learning vectors;
the other part represents a uniform weight decay, with time
constant originating from the floating gate relaxation. We address
the implementation of supervised and unsupervised learning
algorithms with emphasis on the delta rule. Experimental results
from a simple implementation of the delta rule on an 8x7 linear
network are included.

I. INTRODUCTION

N an effort to implement parallel algorithms for information

and signal processing [1]-[3] more efficiently and directly,
there has been a trend toward more distributed and densely
interconnected hardware architectures that process information
in a highly parallel fashion. In an analog hardware environ-
ment the high accuracy found in digital implementations is
traded for the simplicity and interconnectivity of their analog
equivalents, which for the same silicon area allow for sufficient
redundancy at the system level to compensate loss of accuracy
at the process level. Analog neural hardware [4], [5] belongs
to this category, but applications are also found in the areas of
signal processing and process control for linear and nonlinear
problems. The task of the connectivity between elements
reduces to the function of analog matrix—vector multiplication.
Also, in many cases the task of adjusting the connectivity
pattern to optimize computation can be formulated into some
kind of local incremental learning rule for the connection
strengths. Specifically, an important class of supervised and
unsupervised learning tasks satisfies learning rules of the
incremental outer-product type [1], [2], where the specified
change of a connection strength is proportional to the product
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of two terms originating from the two elements it connects.
This class covers Hebbian learning, the delta rule, and error
back-propagation, or the generalized delta rule [1].

A variety of CMOS analog four-quadrant matrix—vector
multipliers have been developed for different accuracy needs
and design constraints [6]. Fully analog implementations re-
quire some form of local on-chip analog storage to set the
connection matrix, either dynamically on capacitors using
a periodic refresh scheme [6]—[8] or permanently on float-
ing gates [9]-[11]. The dynamical volatile approach offers
the advantage of modularity, allowing fast external repro-
gramming of the connections as it is needed, whereas the
nonvolatile approach is preferable for applications requiring
a fixed connection matrix that only occasionally needs to
be modified or reprogrammed. So far, in both categories,
the main effort has been on the programmability [6], [7],
[9], [10] rather than adaptivity of the connections. When the
computation task is not a priori defined or the programmed
connection strengths suffer from distortions caused by offsets
and process variations induced at the fabrication stage, a recur-
sive adaptation scheme, i.e., updating connections as long as
discrepancies persist, is advisable. For this purpose, integrated
parallel adaptation architectures are far more adequate than
external, often serial, programming schemes. Few integrated
parallel adaptive architectures have been suggested so far [8].
In the system outlined here [12], [13], which belongs to the
category of nonvolatile networks, both functions of analog
matrix—vector multiplication and parallel adaptation of the
connection matrix are combined in a densely integrated CMOS
architecture. Floating gates are employed for the permanent
storage of the connections. Illumination of the circuit with
uniform ultraviolet light activates adaptation of the weights.
Any incremental outer-product adaptation rule can in principle
be implemented on this system, by supplying the appropriate
learning vectors which form the outer-product increments to
the network. In addition, as will be shown below, during
adaptation the weights are subject to a uniform decay.

In what follows, we will describe the architecture, examine
the individual and collective functional properties of its con-
stituents, derive a model of the learning system and extract its
parameters, discuss the implementation of standard learning
rules, and verify the learning capability of the system on a
small linear network. To offer a better understanding of the
mechanism of weight adaptation and its impact on the learning
characteristics, the fundamentals of the floating gate relaxation
under UV illumination are introduced first.
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II. FLOATING GATE RELAXATION UNDER UV RADIATION

In contrast to the use of ultraviolet radiation in digital
nonvolatile memory circuits [14], recent applications [11],
[15], [16] employ UV light to adapt analog circuitry. The
analog voltage on a floating gate is not directly accessible
for measurement or computation but its value can be sensed
or made available indirectly through the transconductance of
the transistor it belongs to. Voltage increments on floating
gates are induced by charge transport through the surrounding
oxide, roughly proportional to both the intensity of the incident
UV light and the electric field in the oxide. Therefore, under
uniform UV radiation the sign and amplitude of such voltage
increments are controlied by the voltages of electrodes in the
neighborhood of the floating gate, relative to the floating gate
voltage [16]. Besides this UV-controlled oxide conductance,
the capacitive coupling between the floating gate and the elec-
trodes resulting from the oxide dielectric properties contributes
to the dynamic aspects of the adaptation process.

A poly-silicon floating gate of an MOS transistor with a
nearby second-poly drive electrode is depicted schematically
in Fig. 1(a). The drive electrode serves a dual purpose. First,
under UV adaptation, the drive voltage controls the direction
and size of the voltage increments on the floating gate. Second,
in the measurement mode with the UV disabled, the voltage
on the drive electrode defines a reference for the floating gate
voltage arising from the capacitive coupling between the drive
electrode and the floating gate. In terms of the learning system
these two situations would correspond to the adaptation phase
and the network computation stage, respectively. The two
phases cannot be combined at the same time; an arbitrary
voltage on the drive electrode perturbs a measurement of
the floating gate voltage by capacitive coupling. In order to
uniquely define the value of the floating gate voltage, the drive
clectrode voltage in the measurement phase needs to be kept at
a fixed reference value. A recursive learning scheme requires,
along the adaptation process, periodic sampling of the current
state of the network in the measurement mode to update the
learning vectors for the next adaptation iteration. Therefore,
the quantity of interest here is the floating gate voltage in
the measurement reference mode and its incremental changes
under a time-varying drive electrode voltage in the adaptation
phase. To characterize the interaction between the floating
gate, the drive electrode, and the substrate, a linear resistive
and capacitive network model for the oxide surrounding the
gate is assumed, with conductance values proportional to the
UV illumination intensity. As such, it can be shown that the
evolution of the floating gate voltage in the measurement
mode, Vg, ™, satisfies
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The UV relaxation time constant, 7, results from the parallel
oxide conductance and capacitance RC constant, and the
asymptotic programming voltage, Vig ™, depends on the drive
electrode voltage according to
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Fig. 1. (a) Floating gate nMOS transistor. (b) Relaxation dynamics.

(c) Adaptation characteristics.

with Vigive“(t) the drive voltage on the electrode during
adaptation, and Virive "o the fixed reference electrode voltage
in the measurement phase. The coefficient Adrive”, describing
the impact of the drive voltage under UV illumination on
the asymptote, indicates a measure for the efficacy of the
drive electrode adapting the voltage on the floating gate.
The quantity Agyive™ represents the electrode-gate capacitive
coupling. The derivation of (1) and (2) from a formal analysis
of the floating gate relaxation has been omitted here, as it
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is not of direct interest. A complete analysis, investigating
the dependence of 7, Adrive” and Agrive”  on geometry and
process parameters, will be given in a forthcoming paper.
For completeness, it suffices to mention that, whereas for the
capacitive coupling the inequality 0 < Agpive’” < 1 applies,
the drive efficacy Aqrive” can take any value between —1 and
1, depending on the relative strength of the capacitive and con-
ductive coupling between the drive electrode and the floating
gate. The time constant, 7, exhibits an inverse proportionality
with the UV intensity; the asymptote coefficients Aq.;v.* and
Adrive > 0n the contrary, show no significant dependence on
the illumination strength. Similarly, the geometry of the layout
tends to affect mainly the time constant, and the asymptote
to a lesser extent. Typical observed values for Ay and
Adrive " in our design are —0.5 and 0.8 respectively, and with
an UV light intensity of about 100 mW/cm? obtained from a
commercial 9 W EPROM eraser source, a time constant below
50 s is achieved. Measurements on the floating gate relaxation,
in Fig. 1(b), illustrate the first-order linear dynamic behavior.
Floating gate adaptation rates above 30 mV/s are obtained
for a 2 V drive voltage on the electrode. The measured
characteristics of the asymptote (2) and time constant, 7, are
given in Fig. 1(c).

III. CIRCUIT ARCHITECTURE AND OPERATION

In densely interconnected integrated circuits a dominant
fraction of the area, of order N2 for N elements, is covered
by the connections while auxiliary circuitry at the boundaries
and interfaces, of order N, occupies relatively little space if
organized properly, even if the size per individual element
is significant. With this in mind, the compact design of the
connection circuitry is of the highest priority, which is asserted
by reducing the functions performed at the connection site to a
strict minimum. The main cell here [12], implementing a con-
nection between two elements, Fig. 2(a), consists of only two
transistors, still enough to provide the basic multiplication and
learning functions on the lowest level. By properly cascading
cells with matching common input, output, and learning vector
component lines into a two-dimensional arrangement, Fig.
2(b), the connection matrix is constructed. The compactness
of the layout is evident from Fig. 2(c), showing an 8 x 8 array
with a cell size of 30 um x30 pm fabricated in a 2 um CMOS
process. The interface circuitry at the boundaries of the array,
which supplies the inputs, extracts and amplifies the outputs,
and applies the learning vectors, is provided externally but
will be integrated on chip in a future implementation. The
complexity or architecture of this circuitry is not the issue
here; rather we will address the function of the main cell and
the array of cells.

A. Matrix-Vector Multiplication

To obtain linear four-quadrant matrix—vector multiplication
O; = Z Wi]Ij (3)
J

with inputs I;, weights W;;, and outputs O;, we follow an
approach found in [6] using MOS transistors biased above
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threshold operating in the triode region. By virtually grounding
the I output current line and suppling the input voltage V",
the floating gate transistor 7 in Fig. 2(a) injects a current

ou in in2
I = k((VI® = Vi) VI = VinT)2) @)

into that output line, with V;y, the transistor threshold voltage.
Expression (4) holds for gate voltages well above the thresh-
old, and indicates two-quadrant operation only. To allow both
polarities for the weights, a reference current I\, obtained
from an identical transistor with same drain voltage Vjin but
with gate voltage V:j? ;» is subtracted from (4). This operation
also cancels out the quadratic nonlinearity in (4), as it is
common for both currents. External circuitry then converts the
differential output currents I —I24* collected from the whole
array into the output voltage vector O;, effectively yielding
the weights

Wi = Rk(VEE - ViE ) 5)

ref j

with R the transresistance of the output amplifiers. Expression
(5) assumes output amplifiers with input impedances suffi-
ciently small to ensure proper virtual grounding of the output
and reference current lines. Contrary to [6], the reference cur-
rent /24" has only been generated once, common for all output
currents, in a separate output row of the connection matrix to
reduce the layout area. Thus, on average, each analog multiply
accumulate operation occupies only one transistor in the array.
Nevertheless, a linearity region for the multiplier ranging +400
mV in both the drain input voltages and the differential floating
gate weights with a total harmonic distortion (THD) below 2%,
has been demonstrated at modest current levels in the +5 A
range [13]. In the present implementation, the transresistance
output amplifiers are constructed externally with discrete com-
ponents, limiting the time response currently to the ms range.
We recently developed an integrated configuration, presently
under investigation, with a time response below 5ps and
with an amplifier input impedance of 52, supporting large
multiplier arrays with several hundred inputs.

B. Analog Incremental Outer-Product Learning

Analog four-quadrant incremental outer-product adaptation
of the weights in the learning phase of the network is achieved
by controlling the floating gate relaxation under UV illumina-
tion and loading the learning product onto the drive electrode.
The product voltage is generated by a single transistor, 1%,
using a dynamic sampling technique. Transistor 75, connected
to the drive electrode and the learning drive signal lines as
shown in Fig. 2(a), samples the drive signal V5 (t) onto the
drive electrode each time the other signal, V25 (t), goes high.
To generate the learning product in this way a special encoding
scheme, Fig. 3(a), is devised [12] to construct the drive signals
according to the learning vector components. One component
is encoded in the slope S; of Vi (t), a periodic ramp voltage
signal. The time displacement D; of a pulsed voltage signal
VPi(t) relative to V5 (t) represents the other component. As
such, for a reasonably small pulse duty cycle, the sampled
voltage follows the desired four-quadrant learning product

Vv(l!‘i\'o” ij = Vdri\'cuo + Sz Dj (6)
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Fig. 2. Circuit architecture: (a) main cell; (b) network; (c) chip micrograph.

with an offset Vyive®y given by the ramp signal dc voltage
component. The parasitic capacitance between the drive elec-
trode and the substrate, inherent in the layout, is sufficiently
large to reduce switching noise and clock feedthrough to

acceptable levels, while small enough to avoid slowing down
of the sampling dynamics in response to the narrow pulse
width. To reduce the drift of the sampled voltage on the
electrode between consecutive pulses, which is intensified
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by the UV photocurrents generated in the 75 reverse diode
junctions, a fairly high pulse repetition rate, above 100 kHz,
is needed. An oscillogram of a typical sampled drive electrode
voltage waveform, with corresponding ramp and pulse signals,
is shown in Fig. 3(b). In the computation phase of the network,
the ramp and pulse drive signals are disabled, and the bias
voltage Vgrive o, uniform for the entire array, is supplied to
the drive electrodes of all cells. This is simply achieved with
the same transistors T by driving all pulse signal lines VP4 (t)
steadily high while applying Vaive"o to all ramp drive lines.
Combining the outer-product electrode drive voltages in (6)
and the UV activated relaxation of the floating gates according
to (1) and (2), the adaptation of the connection matrix satisfies
d 1
avﬂgij = _7__ (Vﬂgzj - "/ﬂgB - /\drive(l Sz D]) (7)
The term V&g defines a uniform bias for the gate voltages,
set by the drive electrode bias voltages Virive " g and Virive“o-
This gate voltage bias is used to drive the transistors suf-
ficiently above threshold for proper linear operation of the
matrix—vector multiplier but has no effect on the implemented
weights because of the differential output current configu-
ration. With a zero-slope ramp signal VS (t) = Ve
applied on the reference output row, from (5) the weights obey

d 1 B
(l_fWI] = _; (sz -RE /\(lr1\'o Si, Dj) (8)
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Fig. 4.

In addition to the desired outer-product weight adaptation,
a uniform weight decay applies with time constant 7 from
the UV relaxation behavior. Parts (a) and (b) of Fig. 4 show
characteristics of the time constant and the asymptotic weight
under stationary pulse delay and ramp slope signal drives,
measured on a single cell of the array. The indicated drive
values S; and D; are relative to the full scales, 1.6 V/us and
2 ps respectively.

[V. LEARNING SCHEME AND PARAMETERS

Whereas (8) describes the continuous evolution of the
weights under a varying learning excitation S;(t) x D;(t),
a learning session on the network only allows for discrete-
time updates of the learning vectors S; and D);. Indeed, as
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argued in Section II, the outputs of the network, required to
determine the learning vectors, are unavailable under adapta-
tion. Learning on the network is organized with an iterative
scheme, alternating periodically between the computation and
adaptation mode. During each iteration, the array adapts under
a steady excitation S; and Dj for a fixed time interval At much
smaller than the relaxation time constant 7. Afterwards, during
a short interrupt in the computation mode, a new input vector
is supplied and the learning vectors S; and D; are updated
for the next iteration according to the input vector and the
settled output vector as specified by the learning rule. With
this learning scheme, the discrete change in the weights in the
At interval between two consecutive iterations (k) and (k+1)
can be expressed from (8) in the form

AW = Wit Wi = —a w1y 58 DI (o)
with two learning parameters: o, the uniform weight de-
cay rate, and 7, the incremental outer-product learning rate.
Expressing the learning vector components S; and D; in
dimensionless units relative to full scale —1 < 8. D; <1,
rather than in their physical units as slopes and time delays of
the drive signals applied to the array, the obtained parameters
read

a=1-exp(-At /1) %At/ T
n=aREk AVdrive |/\drivea‘

(10)
(11)

with AVy;ive the nominal (S; x D; = 1) electrode drive voltage
excitation. The absolute sign in (11) covers the case of a
negative drive efficacy Agrive®, causing a negative learning rate
7 in (9). Conceptually, in this situation a positive 7 is enforced,
simply by reversing the polarity of one of the two learning
vectors, e.g. by inverting the slopes of the ramp signals.

Regardless of the particular learning task to be implemented
on the physical system (9), the presence of the weight decay
implies a limit on the effectiveness of the training samples
applied sequentially to the network in the adaptation process.
The weight decay favors learning excitations S; x D; that
occurred within the last few 7 time intervals; training samples
presented before have relatively little effect. Though this may
be useful, particularly for applications requiring a fast adaptive
response under dynamically changing conditions, a sufficient
number of training samples need to be provided to the network
within one time constant 7 interval, in order to project the
underlying characteristics of the training data onto the network.
This requires the condition 7 > A¢, met by adjusting either
the adaptation time step At or the UV illumination strength.
In the 8 x 7 network used for the learning experiments, for a
learning time step of 0.6 s, the time constant has been extended
to 240 s by a fivefold reduction of the UV intensity.

From (10) and (11), the change in 7 relative to At affects
both learning parameters 7 and « to the same extent. In order
to control the relative strength of these parameters, i.e., rescal-
ing the weight decay and outer-product learning increments
independently, the other device and circuit parameters in (11)
need to be evoked. In practice, the transresistance R of the
output amplifiers and the voltage output range AVy,ive Of the
ramp signal drivers are suitable for this purpose. Whereas

some learning applications require a certain weight decay
@ < 1) to improve performance, as will be addressed in the
next section, others may not. However, the limited adjustment
range of the relative decay in the physical system excludes
the case a < 7. To investigate the impact of a finite decay
parameter, the critical value & ~ 1 has been established on the
network for the learning experiments. With R = 330 kQ and
AVirive = 1.5 V, a weight decay rate o = 2.5 x 103 and a
learning rate 7 = 7.0 x 10~ are obtained. Fig. 5(a) illustrates
the incremental weight adaptation characteristics for a single
connection, under steady learning components S; and D;. To
verify the dynamic response of the learning system under a
fluctuating learning product S; x Dj, as in a realistic learning
situation, the evolution of the weights W;; under a random
excitation sequence S; and D; has been observed. From
a linear spectral analysis of the recorded data, the impulse
response of the learning system, that is, the relaxation of the
weight for a unit impulse excitation S, x Dj, is derived in
Fig. 5(b). As expected from (9), an exponential decay profile
is observed, with a sharp transition at zero time, confirming the
instantaneous response of the weight adaptation to fluctuations
in the learning excitations.

V. LEARNING RULE IMPLEMENTATIONS

Incremental outer-product learning rules for supervised and
unsupervised learning tasks on linear and nonlinear networks
have been developed and extentions on the original formula
have been devised to improve specific digital computer im-
plementations. For a two-layer (input—output) feedforward
network configuration, an incremental weight update

AWV = f0P, T®) 1P (12)

is specified for each training iteration (k) with I; the training
sample inputs, O; the corresponding outputs of the network
connected to the inputs by the weights W;;, and, in the case
of supervised learning, 7 the target outputs associated with
the inputs ;. For a linear matrix—vector multiplier, the outputs
simply relate to the inputs as given in (3), but the general form
of (12) is still valid if nonlinear activation functions such as
sigmoid or radial basis functions are applied to the weighted
sums in (3) and if the two interconnected layers are surrounded
by other layers embedded into a larger network [1]. As such,
the conclusions drawn here for learning in linear networks
apply to nonlinear multilayered networks too. The particular
expression for f(O;, T;) defines the learning rule. From 9),
any rule that complies with the general expression (12) can
be implemented on the analog hardware system by applying
S; = f(O;, T;) and D; = I; to the network, however
including the additional weight decay term —aW;;. Specific
implementations with uniform weight decay (9) are examined
in further detail below for both cases of unsupervised and
supervised learning.

A. Hebbian Rule Unsupervised Learning

In the case of unsupervised learning where the network is
trained freely without target T} to detect statistical patterns
in the input vector, most commonly an incremental weight
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update rule of the Hebbian type, f(0O;) = O;, is used [2], [17].
Convergence issues necessitate some form of passivation and
normalization or clipping of the weight patterns arising spon-
taneously from the Hebbian activation. A widely used method
to incorporate passivation in the learning process consists in
including a passive decay —aW;; in the weight update rule
[2]. From (9), this passive decay is naturally included in the
physical learning system

AWSEH = —a W 4 g 0F) 19 (13)

for a straight implementation of the Hebb rule f(O,) = O;.
Still, a normalization or saturation mechanism is required to
ensure confinement of the weights within the desired range.
Instead of relying on the intrinsic saturation of the learning
hardware, a functionally more elegant alternative involves
dynamically renormalizing the weights along the learning
process, by a simple rearrangement of the output circuitry.
Removing the transimpedance amplifiers from the output stage
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of the network, (4) becomes

Z k((vlf;g _ Vvth) (Vjin _ ‘/iout) _ (‘/jin _ Viout)z/z) =0

J (14)
with V,°4¢ the voltage on the ith output line, no longer virtually
grounded. Regardless of the voltage range on the floating
gates Vi?g, the voltage on the output line V,°"* now follows a
weighted average of the input voltages Vji" depending on the
relative strength of the triode conductances lc(Vi?g — Vin). As
in the previous output configuration, a differential processing
of the outputs O; x V' — Vo provides four-quadrant
operation of the connections W;;, though with this scheme
the cancellation of the quadratic nonlinearities in (14) is only
partial. With some algebraic manipulations, omitted here, it
can be shown that (14) imposes the constraints Wi =0
and —-1/N < W;; < 1~ 1/N on the weights W;;, with
N the number of input units. Hence the type of weight
renormalization obtained this way has subtractive as well
as divisive features. A formal analysis of the mentioned
renormalization properties along with performance test results
of the algorithm on the network will be given elsewhere.

B. Delta Rule Supervised Learning

Most supervised learning algorithms training the network
to map the input samples I; to the target output samples
O;(1I;) = T;, such as the popular error back-propagation rule,
are based on the delta rule [1], Widrow—Hoff rule [18] or the
LMS algorithm [2], (3], [19] with f(O;, T;) = T; — O; for
linear networks (3). The algorithm is proven to converge under
a sequential and cyclical presentation of the training samples
(I](»k)‘ Ti(k)), yielding asymptotic weights close to optimum in
a least square error sense [2], [19]. However, the inclusion of
the weight decay in the update rule (9),

(15)

introduces a steady bias in the evolution of the weights, pulling
their asymptotes toward the origin. To characterize the effect of
the decay term in (15) on the learned weights under otherwise
ideal learning conditions, we train the network with perfectly
linear samples

7

AWE = —a WP 1y (T - 0P) 1V

(16)

(k) _ 7T 7(k)
=S
J

selected from repeatedly generated random inputs —1 <
1 J(-k) < 1 and from a fixed target weight matrix W}; For the
analysis under the condition < 1, the weights effectively
adapt according to the statistical average rather than the
instantaneous value of the stochastic fluctuations in the outer
product. For zero-mean random inputs (I](-k)) = 0 with
variance <1,§’°)L§’“)> = 02 §,q, the weights on average change
as

17

A first observation of (17) concerning the dynamics of con-
) 21 S
vergence reveals a time constant (o + 7 o)~ characteristic

i

(AW ID) = —a W 4 o® (WE-w ).
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Fig. 6. Single-cell weight dynamics under delta rule training.

of the required learning time, considerably faster than the UV
relaxation when i 6% > «. More importantly, for & — oo, (17)
implies a uniform scale reduction of the asymptotic weights
W;;> with respect to the targets W,

Wi = A V[/';‘Jr A= (1 + a/7}02)_ (18)

Only in the absence of weight decay, i.e., « = 0, does the
algorithm yield the target weights without a reduction in scale.
However, the learning task is still effectively accomplished for
any value of A under (18) since the uniform scaling of the
weights consistently for all connections causes a scaling of
the outputs (3) with the same reduction factor A for any input
combination I;. In general, depending on the relative sirength
of the decay « versus learning rate  and the input variance
o? of the training samples, we have 0 < A < 1, but preferably
A > 0.5 for practical purposes. For the implementation on
the network, & = 2.5 x 1072 and 5 = 7.0 x 10~2, and from
a umform random distribution of the mput training samples

-1< I < 1, a medium value of \ ~ 5 is obtained.

Fig. 6 shows the measured dynamics of weight adaptation
under the delta rule (15) starting from zero initial conditions,
obtained from a single connection in the array by supplying
constantly generated linear samples (16) to the network for
different target weights W,f The observed learning time
constant, around 180s, and weight asymptote scalar, A ~ 0.45,
agree with the expected values from the model (17). The
high-frequency weight fluctuations in Fig. 6 are only partially
due to stochastic contributions of the outer-product increments
~ O(no?); additive noise induced by the measurement process
accounts for the discrepancy.

To verify the parallel learning capability of the learning
system, the delta rule algorithm has been tested on the full
network of Fig. 2. One output column of the 8 x 8 array has

been reserved for the reference output 194 while the remaining

connection cells support eight input units /; and seven output
units ;. External pulse and ramp signals generated with
discrete components supply the learning vectors D; and S;
to the network. Fig. 7 shows the measured response of the
8 X 7 network weight matrix starting from arbitrary initial
conditions to the delta rule learning increments (15). The
target weight matrix Wj, used to determine the target outputs

Ti(k) in conjunction with the random inputs IJ( ) is given in

Table I. Because of the scaling of the weights WL-(J-k) Versus IVS

and the outputs ()Ek) Versus ﬂ(k'), a traditional mean square
error measure would be inappropriate for judging the learning
performance. :astead, a figure of merit for the correspondence
between the network and the target, accounting for a uniform
scale factor, is given by

Z()(k)TU\ (Z )(“2 ZTi(k‘)Q)l/Q (19)

1

(k)
Lo

for the outputs, and similarly

1/2

rik (20)

W = Z W(A)WI (Z W'i(jk)z Z WI?Q)

ij iJ
for the weights. The correlation formulas (19) and (20) yield
a number between —1 and 1, with values of 1 and —1 for
perfect direct and opposite coherence, respectively, and 0
for no correspondence at all. The matrix correlation (20),
involving a measurement of the weights, is observed every 50
samples, and the vector correlation (19) is recorded for every
sample. Both are plotted in Fig. 7. A correspondence I‘n W
of 0.93 between adapted and target weights has been achieved
after about 600 iterations on a time scale roughly comparable
to the UV relaxation time constant 7 = 240 s. The weight
matrices observed at convergence for two training sessions
with different initial conditions are included in Table I. Similar
training tests, with other arbitrary target matrices Wg, have
demonstrated proper convergence with correspondence figures
{5452 all between 0.90 and 0.95. Whereas the offsets and
variance induced by the learning circuitry combined with
various noise sources certainly affect the performance, it is
anticipated that the main limitation for further improvement
is currently imposed by the nonlinearity of the matrix—vector
multiplier (3). Weight variations AW;; mount up as high
as 4% of full scale over the input range, as indicated in
Table 1. The nonlinearity of the weights causes the persistance,
after convergence, of fluctuations in the output- target vector
correlation FO 7> Fig. 7, under the random inputs I ") These
fluctuations illustrate the attempts of the learning system to
map a linear target function onto a slightly nonlinear network
for the entire range of the inputs. It is expected that for
nonlinear learning tasks on large-scale multilayered networks
with a sufficient number of hidden units, the problem of
network inadequacy will be redressed.

VI. DISCUSSION AND CONCLUSION

We have described and demonstrated the operation of a com-
pact, fully parallel on-chip learning system in analog CMOS
integrated technology for training large-scale matrix—vector
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TABLE [
TARGET AND LEARNED WEIGHT MATRICES OF THE 8 X 7 NETWORK FOR TWO DELTA RULE TRAINING
SESSIONS (INDICATED ERROR VALUES REFER TO NONLINEARITIES OF THE WEIGHTS)

Weights Wj; j=1 j=2 j=3 j=4
i=1 Target: -0.031 -0.198 0.512 0.211
Sess. A: -0.02 +0.00 -0.05 +0.01 0.27 10.03 0.13

Sess. B:  -0.02 *0.02 -0.03 +0.03 0.36 #0.00 0.15

i=2 T: 0.139 0.323 0.183 0.245
A: 004 +0.01 0.07 %001 0.09 #0.01 0.09

B: 0.07 +0.02 0.07 +0.02 0.08 +0.02 0.11

i=3 T: 0.087 0.259 -0.070 -0.429
A: 0.01 £0.03 0.07 *0.01 -0.02 10.02 -0.15

B: 006 +0.01 010 £000 -0.03 #0.00 -0.13

i=4 T: -0.333 0.297 -0.533 -0.309
A: -0.14 +001 010 000 -0.11 +0.01 -0.07

B: -0.10 #0.03 013 #2002 -012 #001 -0.03

i=5 T: -0.222 -0.486 -0.488 -0.295
A: -0.08 +0.03 -0.21 £0.02 -0.09 #0.01 -0.04

B: -0.05 +0.04 -0.17 +0.03 -0.10 £0.02 -0.02

i=6 T: 0471 0.338 0.220 0.469
A: 017 *0.00 009 +0.00 0.11 #0.00 0.17

B: 0.17 +0.01 0.08 +0.00 0.12 #0.00 0.19

i=7 T: -0.555 -0.212 0.588 0.427
A: -0.19 +0.00 0.08 +0.01 026 +0.03 0.13

B: 0.17 #0.02 -0.11 #0.01 0.28 +0.00 0.19

j=5 j=6 j=7 j=8
-0.170 0.206 -0.462 0.311
000 -007 +000 005 001 -0.19 #002 016 #0.03
003 -0.07 +0.04 007 002 -021 #0.02 014 +001
0.222 -0.357 -0.508 -0.271
002 006 £002 -0.10 001 -0.16 #0.02 -0.06 #0.02
2003 006 *004 007 £002 017 £0.03 -0.07 +0.03
0.186 0.458 0.045 0.150
003 -0.03 +002 018 #003 008 002 007 +0.03
002  -0.05 +001 021 #001 009 000 012 +001
0.382 -0.350 -0.111 -0.044
000 015 #001 -0.09 +000 -005 +001 002 #0.00
002 015 $002 -0.08 £002 -0.05 $002 006 +0.02
0.161 -0.350 0.365 -0.259
003 007 #0.02 -007 #003 012 £003 -0.08 +0.02
1003 008 003 -008 +003 015 #003 -0.06 +0.03
0.232 -0.470 -0.119 -0.384
001 009 001 -0.13 2001 -0.01 #000 -0.10 +0.00
001 012 #001 -0.11 $001 -0.03 #001 -0.10 +0.00
0.509 0.077 0.107 0.177
001 014 2000 007 +001 003 2001  0.11 001
003 016 003 006 2002 002 2002 009 +0.03

[
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Fig. 7. Learning dynamics of the 8 x 7 network under the delta rule.

multiplier networks. Because of its parallel interface, the
system supports learning applications on multilayered densely
interconnected artificial neural networks using modules of
matrix—vector multipliers to provide the connections between
different layers of neurons. Rather than relying on sequential
programming of the connections, the adaptation of the weight
matrix is performed by parallel increments specified by an
arbitrary outer-product iterative learning algorithm. Besides

the enhancement in learning speed, the parallel on-chip learn-
ing configuration offers the additional advantage of a reduced
sensitivity of the weights to process variations and offsets
induced in the fabrication stage, granted the scale of the
network provides enough degrees of freedom to adjust for
these errors by the learning algorithm.

On the microelectronic level, each connection between
two input and output units occupies a single cell in a two-
dimensional arrangement. To reduce the area-intensive con-
nectivity and adaptation functions performed locally in each
cell, a higher complexity has been allowed for the interface
circuitry at the boundaries of the connection array, buffering
the inputs, amplifying the outputs and providing the signals
for the generation of the outer-product increments. For densely
interconnected networks, most of the area is covered by the
array of connections where a simple design and compact layout
of the connection cell leads to substantial savings in the total
silicon area. Presently, with a cell size of 30 um x 30 pm
in 2 pm technology, the integration of a 256 x 256 array of
adaptive connections on a 1cm? die is feasible. Under such
conditions, with an input voltage range of £200 mV, proper
biasing of the triode transistors 7} easily permits a peak power
dissipation below 1 uW per cell, thus never exceeding 100 mW
for the entire array. Despite the favorable integration density
and power consumption levels, the true parallel computation
power of the network is currently restricted by the pin-
out limitations on its inputs and outputs. For multilayered
networks, however, the I/O bottleneck applies to the input and
output layers only, not to the internal layers; thus the pin-out
problem becomes less of a factor as the relative proportion of
hidden units increases.

The weight increments in the learning process, induced
under UV illumination, consist of two contributions: a uniform
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passive decay and an active outer-product increment. An
adjustment of the UV intensity or the adaptation time step
affects both terms to the same extent, hence controlling the
speed of the learning. The relative proportions of both terms
are adjustable as well, though bounded by the limits of
the hardware. With properly adjusted learning parameters,
learning time constants below 50 s are possible under a modest
100 mW/cm? UV illumination level. While the active outer-
product contribution to the weight increments directly relates
to the learning task, as it is specified by the learning rule,
the decay term may prove useful in passivating weight fluc-
tuations and offering the flexibility of fast changes according
to dynamically changing conditions. For supervised learning
applications, however, a direct implementation of the delta
rule in the presence of weight decay causes a uniform scale
reduction in the outputs with respect to the targets. Results
from a delta rule experiment conducted on the 8 x 7 network
demonstrate the learning capability of the system, well within
the accuracy limits imposed by the network nonidealities.
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