346

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 2, MARCH 1996

An Analog VLSI Recurrent Neural Network
Learning a Continuous-Time Trajectory

Gert Cauwenberghs, Member, IEEE

Abstract—Real-time algorithms for gradient descent supervised
learning in recurrent dynamical neural networks fail to support
scalable VLSI (very large scale integration) implementation, due
to their complexity which grows sharply with the network dimen-
sion. We present an alternative implementation in analog VLSI,
which employs a stochastic perturbative algorithm to observe the
gradient of the error index directly on the network in random
directions of the parameter space, thereby avoiding the tedious
task of deriving the gradient from an explicit model of the net-
work dynamics. The network contains six fully recurrent neurons
with continuous-time dynamics, providing 42 free parameters
which comprise connection strengths and thresholds. The chip
implementing the network includes local provisions supporting
both the learning and storage of the parameters, integrated

"in a scalable architecture which can be readily expanded for
applications of learning recurrent dynamical networks requiring
larger dimensionality. We describe and characterize the func-
tional elements comprising the implemented recurrent network
and integrated learning system, and include experimental results
obtained from training the network to produce two outputs
following a circular trajectory, representing a quadrature-phase
oscillator. .

1. INTRODUCTION

NALOG VLSI (very large scale integration) implementa-
tions of neural networks with learning capabilities have

received much attention lately, and several working analog -

chips or systems employing analog chips incorporating learn-
ing have been reported [1]-[9], among others. The advantages
of using analog VLSI as technology medium for special-
purpose neural-network implementations include the inherent
parallelism of the summing operations [10] and the compact
size and low power consumption of the elements performing
the local processing functions [11], [12]. Some disadvantages
attributed to analog VLSI, in general, are the limited avail-
able dynamic range and the strong requirements on precise
matching between components to achieve a reasonable degree
of accuracy. The sensitivity to precision of implementation,
however, depends strongly on the system-level specifications.
One of the desired properties of artificial neural networks is
exactly “graceful” degradation of performance under errors in
the implementation, such as offsets in a typical analog VLSI

" Manuscript received December 27, 1993; revised October 9, 1994. This
work was supported by ARPA/ONR under Grant N0014-92-J-1891.

The author was with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA, 91125 USA. He is now with the De-
partment of Electrical and Computer Engineering, Johns Hopkins University,
Baltimore, MD, 21218-2686 USA.

Publisher Item Identifier S 1045-9227(96)00168-3.

process, through redundancy in distributed representation [13].
For learning neural nétworks, in particular, the effects of
offsets and mismatches in analog hardware implementations
can be significantly reduced by “learning” the set of parameters
directly on the implemented network, rather than programming
the network with the parameter values obtained from learning
off-line using a model of the implemented network [14],
[15]. Parailel architectures for fast and efficient learning,
embedded with the implemented network, can be obtained
for certain classes of learning algorithms, mostly those based
on incremental outer-product rules [6]-[8] and other local
update algorithms [1]-[5], [9]. On the other hand, the learning
performance of such integrated learning networks may still be
affected by the analog precision of the implemented learning
functions themselves, depending on the nature of the algorithm
used. :

Virtually all of the learning hardware implementations of
neural networks which have been developed so far exclude
dynamical effects in the inputs and outputs, basically for appli-
cations of pattern recognition and association of input—output
pairs. Such applications typically deal with feedforward net-
works, for which the learning is fairly standardized [13] and
easy to implement in VLSL VLSI leaming architectures,
capable of training recurrent networks as well, have been
reported [1], [7], [16], for learning fixed point attractors
discarding transient response. While analog recurrent networks
learning time-varying features offer a wide range of attractive
applications, e.g., for process control and identification of dy-
namical systems [17], their implementation in special-purpose
hardware has currently not been demonstrated. One . factor
seriously inhibiting implementation is the complexity of the
available learning algorithms in a dynamic setting. Several ver-
sions of gradient descent algorithms for supervised learning in
dynamical recurrent neural networks exist [18]-[23]. None of
those, however, support a scalable implementation for on-line
(real-time) operation in a two-dimensional (2-D) arrangement,
as required for a typical VLSI process technology.

In the following, we describe an analog VLSI system with
simple and scalable architecture for learning in dynamical
recurrent neural networks, and present experimental results ob--
tained from a CMOS single chip implementation. The learning
architecture employs a stochastic perturbative algorithm which
probes the dependence of the network error on the parameters
directly, rather than deriving an estimate of the gradient based -
on an explicit model. of the network dynamics [25]. The
direct approach of observing the error gradient on the physical

1045-9227/96$05.00 © 1996 1EEE

CAUWENBERGHS: ANALOG VLSI RECURRENT NEURAL NETWORK

network relates to techniques of stochastic approximation [26],
[27] and finds parallels in other recent algorithmic develop-
ments and hardware learning architectures as well [28]-[33].
In addition to the significant reduction in implementation
complexity, the direct observation of the gradient avoids the
offsets which may arise in a derived gradient estimate, due
to. mismatches between the assumed network model and its
physical implementation. In fact, the direct approach further
extends directly toward optimization of arbitrary parameter-
driven dynamical systems, of which the dependence of the
error index on the parameters and a model of the network does
not need to be known or specified [30]. As a demonstration
of principle, we have implemented a small recurrent neural
network with continuous-time dynamics, integrated with the
learning circuitry on a CMOS chip, and have tested its
learning performance with a simple trajectory learning task,
representative of more general and useful applications for
system identification and adaptive control. By virtue of the
scalable and modular learning architecture, the chip presented
here can be extended, with minor modifications to the internal
structure of the cells, to accommodate applications of learning
dynamical recurrent systems of larger dimensionality.

A brief specification of the implemented network model
and learning algorithm is given in the next section. Section
IIT describes the architecture of the integrated network and
learning system, and the circuit implementation of its func-
tional elements. Experimental results on learning a periodical
continuous-time trajectory are analyzed in Section IV, and
Section V concludes with the strengths and limits of the
implemented system.

II. SYSTEM ARCHITECTURE

The implemented network contains six fully interconnected
recurrent neurons with continuous-time dynamics

6
T %xl =—x; + Z Wij o(x; —0;) +y; (N
j=1
with z; () the neuron state variables constituting the outputs of
the network, y;(t) the external inputs to the network, and o(.)
a sigmoidal activation function. The time constant 7 governs
the dynamics of the network, providing first order low-pass
filtering in the evolution of the neuron state variables. A
more elaborate model of neural dynamics would incorporate

individual adjustable time constants at the level of the synaptic

contributions [24]. The value for 7 is kept fixed and uniform
in the present implementation. The free parameters, to be
optimally adjusted by the learning process, constitute the 36
connection strengths W;; and the 6 thresholds §;. Since the
implemented learning algorithm does not distinguish param-
eters based on a presumed model of the network structure,
the parameters W;; and 6; will be considered below as
components of one single parameter vector p.

The network output consists of the two neuron signals z1 (t)
and z2(t), which are trained in supervised mode with target
output signals z7 () and 2% (¢) presented to the network. For
the specific trajectory learning example used in the exper-
iments, no inputs y;(¢) are specified along with the target

347

outputs =7 (¢). The implemented architecture, however, allows
for more general learning tasks typical in applications of
identification and control, for which the target signals comprise
the desired dynamical response of the network (or plant) under
activation of inputs y;(t).

Supervised learning of the time-varying targets 7 (t) con-
sists of minimizing, in principle, the time average .

&)= tim g [e @xey @

of the network output error

2
e(x" (1), x(t)) = Y _ l2¥ (1) — 2x(O))” 3)

k=1

with a distance metric of norm v. The infinite time window for
integration of the network error (2) is not practical for real-time
implementation, but a fair approximation to the error average
can be obtained by replacing the integral (2) by the output
of a low-pass filter operating on the instantaneous network
error (3). The approximation is particularly valid in case the
training sequence of input and target signals is periodic, with
a repetition rate significantly higher than the cutoff frequency
of the filter. The condition of periodicity is needed to ensure
consistency in the outcome of the error measure taken at
different instances in time. While alternative on-line versions
of the error measure £(p) can be formulated, which allow
for faster learning speed and better convergence behavior, the
low-pass filtered version used here is easier to implement while
still allowing to demonstrate the general principle. The choice
implies the restriction of a periodic format for the training
signals, which we adopt in the learmning experiment.

A stochastic perturbative algorithm, which directly observes
the dependence of the error measure £(p) on the parameters, is
used for error descent learning [25]. The learning algorithm it-
eratively specifies incremental updates in the parameter vector

p as
pHD = pk) _ y £ (k))

with the differentially perturbed error
ak) - 1 *) 4 (k) (k) _ (k)
£0) = = (£(p® +a®) - £(p® -=M)) ()

obtained from a two-sided parallel activation of fixed-
amplitude random perturbations 7;*) onto the parameters
pi®); ;) = 45 with equal probabilities for both
polarities. The algorithm basically performs random-direction
descent of the error as a multidimensional extension to the
Kiefer~Wolfowitz stochastic approximation method [27], and
several related variants have recently been proposed for
optimization [28], [29] and hardware learning [30]-[33].
When applied to on-line supervised learning in recurrent
dynamical systems, the update rule (4) and (5) provides a net
computational efficiency rivaling that of alternative techniques
based on exact gradient descent, at a much reduced complexity
of implementation [25].

348

To facilitate learning, a teacher forcing signal is injected
into the external network input ¥ according to

yi(t) = A (a7 (t) — 2:(t)), ©)

providing a feedback mechanism that forces the network out-
puts toward the targets [20]. A symmetrical and monotonically
increasing function for ~(.) serves this purpose. While not
needed for general applications, the feedback signal provided
by the teacher forcing (6) is quite essential in the case of
trajectory learning, in absence of training input signals y (%),
since ‘otherwise no mechanism is available to synchronize the
dynamics of the network x(t) with that of the target output
signals x7(¢) during the process of learning. In principle,
the teacher forcing signal vanishes near convergence, where
the targets =7 (¢) and outputs =;(¢) coincide. In practice, the
teacher forcing amplitude A needs to be gradually attenuated
along the learning process, as to suppress any bias in the

i=1,2

network outputs that might result from residual errors at-

convergence [20].

III. ANALOG VLSI IMPLEMENTATION

The network and learning circuitry are implemented on a
single analog CMOS chip. While most learning functions,
including generation of the random perturbation bits, are
integrated on-chip along with the implemented network, some
global and higher-level learning functions of low dimension-
ality, such as the evaluation of the error (2) and construction
of the perturbed error (5), are performed outside the chip. The
off-chip implementation of the higher-level global functions
allows for greater flexibility in tailoring the learning process.
Conversely, the lower-level learning functions involving the
full dimensionality of the parameter vector are implemented
locally on-chip, where they are performed in parallel for op-
timal efficiency. The implemented array structure of learning
cells, providing locally for the parameter updates, additionally
serves to refresh the volatile parameter values for long-term
storage after learning is completed. The structure and func-
tionality of the implemented network and learning circuitry
are described below. '

A. Implementation Floor Plan

The floor plan of the VLSI network of synapses is organized
in the usual 2-D array configuration for interconnecting two
layers of neurons, with input and output lines running across
the array of synapses in orthogonal directions, whereby two
particular input and output lines intersect at the location of
the synapse cell interconnecting the corresponding input and
output neurons [10]. The 2-D array of synapses interfaces at
the outside boundary with a linear array of output neuron
cells, collecting synaptic contributions corresponding from the
output lines for further processing to construct the neuron
outputs. With synapse cells supporting analog current-mode
outputs, the synaptic contributions are collected at the output
simply by dumping the analog output currents supplied by the
synapse cells directly onto the output lines. This current-mode
output arrangement combined with the 2-D array configuration
of synapse cells offer a simple, modular and scalable VLSI

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 2, MARCH 1996

architecture for implementing a fully interconnected neural
network, adopted here. Continuous-time recurrent dynamics in
the neuron state variables, in accordance with (1), is obtained -
by feeding the first order low-pass filtered neuron outputs back
into the neuron input layer [34].

To maintain the scalable and modular architecture of the im-
plemented network while integrating local learning functions
onto the chip, the added complexity of global on-chip inter-
connects necessitated by the implemented learning algorithm
cannot exceed the N? limit imposed by the 2-D arrangement
of cells. For feedforward steady-state neural networks, the
typically used incremental outer-product learning rules, such
as the delta rule and backpropagation for supervised learning
and Hebb-type rules for unsupervised learning, support a
scalable and integrated 2-D architecture intertwined with the
implemented network [6]. No scalable on-line extensions
to the outer-product rules are available, however, for on-
chip learning of time-varying features in dynamical recurrent
networks. o

The stochastic perturbative algorithm, in contrast, supports
a simple implementation structure integrated locally with the
network, with basically no requirements for global intercon-
nects other than those already supplied by the network itself,
for observation of the network error £(p). The implementation
structure comprises an array of identical local learning cells
superimposed onto the array structure of network cells, each
instance connecting locally to'the analog storage node of one
particular parameter W;; or 8; in the network. Except for
a few global learning signals, -distributed in identical format
to all local learning cells, no communication across different
cells is needed to perform the learning functions, with the
learning cells basically operating autonomously to supply
the parameters updates from the locally generated parameter
perturbations. Because of the model independence of the
learning algorithm, the implementation structure providing
the learning functions can be generalized directly to other
parameter-driven networks, say with nonstandard or adjustable
configuration of the processing cells and their interconnections
[35]. The implemented learning functions essentially retain
their relative complexity regardless of the structure of the
implemented network in which they are embedded.

Fig. 1 shows the structural organization of the integrated
network and learning functions, comprising an array of
synapse and threshold parameter cells each including local
learning and storage facilities, and a linear array of neuron
output cells at the periphery. Auxiliary provisions to support
local generation of the parameter perturbations during learning
mode, and to refresh the volatile parameters during storage
mode, are also indicated. Global connections for distributing
certain scalar signals uniformly to all cells in the array are
omitted from Fig. 1 for clarity. The functional specification
and circuit implementation of most of the elements in Fig. 1
are further elaborated in the text below..

B. Network Circuitry

A transconductance current-mode approach is adopted for
the implementation of the network, allowing continuous-time

CAUWENBERGHS: ANALOG VLSI RECURRENT NEURAL NETWORK

349

————____ _BWARYQUANTIZATION
FO0 00 Q0 Q0 0 0 | s
o ottt ottt FORGING
7 o - ‘ - | [
T Wi H W H Wi H Wi [Was § Wie | o I () E
BT L R S R PO
7o n H I L T | !
% 1 Wa H W | o] - 5 . H»xz(t) |
y [T THF - ;o R A O)
o H)
5 Tty o~ N 4 - T Le—e—=
S| jwaH :H~H H E
W] = — -~ -~ - X3
§ o AL TTTIT
£ | mie] - : m] U
2 Wa H H =] H =
g HH—HIHh—LHJl:iI A : -
*Twad H H H- Hwa!
g . — E o % s X5
E a JLIL [T TIT [N ITHHE—HHH -
g | %] = -] i
5 1 Wea [] - u Wes [Wes | .
— — = o 6
o L TITTT [MIT IO 1JT HA——
ne He e He e o/l |
off | off [off | off | off off [ret
AR Y Y Y SR S
n g ny ny A4 n)

Fig. 1.

evolution of the network state variables. Through simple
transconductance circuitry, which includes regulated cascode
triode structures and double-stack differential pairs described
below, a wide dynamic range is achieved for the neuron
voltages and parameter values at relatively low levels of power
dissipation.

A high-output impedance transconductance element with
wide voltage range, which is used in both the synapse and
neuron cell circuitry, is shown in Fig. 2(a), together with its
symbolic representation for further reference in subsequent
figures. The device comprises a MOS (metal-oxide semi-
conductor) transistor MT biased in the linear triode region,
connected to a cascode transistor MC which by means of
a high-gain feedback circuit [36], [37] provides high output
impedance while forcing the drain of the triode transistor MT
to a constant voltage level. The triode drain voltage V,MT
is primarily set by the control voltage V, of the regulated
cascode circuit, and is largely independent of the triode gate
voltage and cascode drain voltage. Therefore, the supplied
output current I, is proportional to the input voltage Vi,
while invariant to the output voltage Vi, implementing a
linear transconductance element operating over a fairly wide
voltage range of Vin. A bias circuit to generate the control
voltage V. from a desired level for VM, specified by an
externally supplied voltage Vj, is shown in Fig. 2(b). The
bias circuit allows for approximately linear control of the
transconductance value of the element by means of the voltage
V4. Only one instance of the bias circuit needs to be provided

Array structure of the network, containing parameter cells with integrated learning and storage functions.

for every family of elements with a common transconductance
value.

An active resistive element with wide voltage range is
effectively obtained by combining two instances of the triode
transconductor with a current mirror, shown in Fig. 3(a).
The variable resistive element, injecting a current into the
Vous terminal proportional to the voltage difference Vg —
Vout and the control voltage Vg, is used particularly for
conversion between voltage and current formats of the neuron
state variables of the network. The measured I-V charac-
teristics of the implemented variable resistor are given in
Fig. 3(b), indicating fairly strong nonlinearities in the im-
plemented resistance. Certainly, other CMOS (complimentary
MOS) circuit implementations of variable transconductance
and resistive elements, with better wide-range linear 1-V
characteristics, are available, e.g., [3] and [38]. Linearity,
however, is not an absolute requirement in the implementation
of an intrinsically nonlinear system. Nonlinearities and other
errors in the implemented network furthermore provide an
opportunity to experimentally verify the robustness of the
learning performance in the presence of model mismatches.
A primary motivation for using the transconductance element
of Fig. 2(a), besides the high-impedance current output and
the wide dynamic range of the voltage input, is the ohmic and
capacitive decoupling between the voltage input and current
output nodes, allowing for fairly insulated capacitive analog
storage on the Vj, terminal as needed to implement volatile
adjustable parameters.

350

Vin

Ve
werdl b

(b)

Fig. 2. Wide range CMOS triode transconductance element with regulated
cascode high impedance output. (a) Circuit diagram. (b) Bias generating
circuit.

Fig. 4 shows the schematic of the main synapse and neuron
cell circuitry employed in the network array and its peripherals.
A synapse cell of single polarity is shown in Fig. 4(a). A
constant current I;;, linear in the voltage W;; over a wide
range, is provided by an instance of the triode multiplier of
Fig. 2(a). The synaptic current I;; feeds into a differential
pair, injecting the current I” o(z; —§;) differentially into the
diode-connected I\, and I, output lines. The double-stack
transistor configuration of the differential pair offers an ex-
panded linear sigmoid range at modest I;; current levels [39].

The summed output currents I, and I, of a row of
synapses are collected in the output cell of the corresponding
neuron z;, Fig. 4(b). The diode connection of the load transis-
tors on the output lines of Fig. 4(a) provides normalization of
the collected output currents to an appropriate level, regardless
of the mumber of participating synaptic cells feeding into the
neuron output, thereby supporting scalable expansion of the
network architecture [40]. The neuron output cells also receive
two common reference currents- 1 +f and I, obtained from
one separate row of reference synapses, 1dent1cal in structure
to the other synaptic cells. The reference synapses, represented
in the bottom row of the array of Fig. ‘1, are supplied uniformly
with a synaptic strength Weg, deﬁhing a common offset for
the synaptic values W;; serving as an effective zero level
reference for four-quadrant operation of the synapses [6]. By
combining the currents I, Io.., I, and I, through mirror

T

and summing operations, the neuron cell constructs the output

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 2, MARCH 1996

1.0
05=
3
0.0
-]
2
0.5
a0k | Vog=25V
1 1 !
1 2 3 4 1 2 3 4
Vout V) Vout W)
()
Fig. 3. Wide range active CMOS resistive element. (a) Circuit diagram. (b)

Measured I-V characteristics.

current
Low = (out ~ Lous) = (ke — ;f)
_chW,]a —8,) - ch oft 05— 0;)
6
=g. » (Wi — Wog) o(z; — ;). O

j=1

Apart from a factor g., which accounts for the triode element
transconductance and current scaling factors on the output
line, the current (7) corresponds to the summed synaptic
contributions in (1). Additionally, the contribution of the
external input y; to neuron z; is included in (7) by injecting a
current proportional to y; into the output node. With the partic-
ular network configuration of the present implementation, for
demonstration of trajectory learning, the external inputs only
contain the teacher forcing signals (6) applied to the first two
neurons, 7 and zg9. A differential transconductance element
with inputs z; and :cT for forced teacher action in accordance
with (6), is shown connected to the neuron output in the dashed
inset of Fig. 4(b), applicable to the forced neurons z; and x5
only. The transconductance element implements. the teacher
forcing characteristics of (6), with the function ~y(.) petformed
by the sigmoidal transfer function of the .input differential
pair, and the amplitude A\ determined by the tail current of
the device, equal to the product of the triode transconductance
ge ous and the control voltage V.

CAUWENBERGHS: ANALOG VLSI RECURRENT NEURAL NETWORK

RN
Q~
E

-

Vc out

Xoff

(b)

Fig. 4. Schematic of synapse and neuron network circuitry. (a) Synapse cell
of single polarity. (b) Neuron output cell with current-to-voltage converter.

The combined output current I,y i3 converted to the neuron
output voltage z; by means of an active resistive element, as
described above with reference to Fig. 3(a). Besides serving
to convert between current and voltage formats, the resistive
element also implements the dynamics for the neuron state
variables, with the time constant 7 in (1) corresponding to
the RC product of the resistance value 1/g.ou¢ and a parallel
capacitance Cout. With Coyy = 5 pF, the delay ranges between
20 and 200 pus, adjustable by the control voltage V. out
(Va out) of the regulated cascode defining the conductance
g out Of the resistive element.

Fig. 5 shows the measured static characteristics of the
synapse and neuron functions for different values of W;; and
8; (i = j = 1), obtained by disabling the neuron feedback
and driving the neuron inputs of the synapse array externally.
Effects of random and systematic errors in the implementation
on the shape of the curves are clearly visible. In particular, the

351

6:=00V
~~ 0.0 [~ ~—
2
= 02} _
8
s
5 04F 7
>
e
3
06} -
g* -08V
08} -
W;=-16V
NN 1 i 1 1
10 05 0.0 0.5 1.0
Input Voltage x; (V)
(@)

T T T T T
~ ool Wy=16V] |
2
;: 0.2 -
go B=-16V
% 04} -
> -08V
E] 00V 08V

06} - -
B
3
08} =16V |
| 1 1 1
-1.0 05 0.0 05 1.0

Input Voltage x iV
(®)

Fig. 5. Measured static synapse and neuron characteristics, for various
values of (a) the connection strength W;; and (b) the threshold 6;.

characteristics for different threshold values #; in Fig. 5(b)
show a significant distortion due to saturation effects at the
boundaries of the synapse dynamic range. Nevertheless, the
discrepancy between expected and realized network charac-
teristics is largely irrelevant, since the stochastic perturbative
learning process does not assume a particular form of the
network structure, or perfect model knowledge of the im-
plemented structure. Significantly more important than the
shape of the implemented network characteristics is the analog
resolution it supports for the network parameters and state
variables. As demonstrated in Fig. 5, the implemented network
provides a dynamic range of 1 V for the neuron voltages, and
3 V of fairly linear voltage range for programming of the
synapse and threshold parameters.

C. Learning Circuitry

Fig. 6(a) shows the simplified schematic of the learning cell
circuitry, replicated locally for every parameter W;; and §; in
the network array of Fig. 1. As indicated above, most of the

352

&(p) 8(p +n) &p-7)

®

Fig. 6. Learning cell circuitry. (a) Simplified schematic. (b) Waveform and
timing diagrams.

variables relating to the operation of the learning cell are local,
with exception of a few global signals communicating to all
cells. Global signals include the sign and the amplitude of the
perturbed error & and predefined control signals. The stored
parameter p; and its binary perturbation ; are strictly local to
the cell, in that they do not need to communicate explicitly to
outside circuitry, except trivially through affecting the neural
network it drives. This simplifies the structural organization
and interconnection of the learning cells, which are integrated
with the synapse and threshold cells in the network array of
Fig. 1.

The parameter voltage p; is stored on the capacitor Cstore,
-and interfaces directly with the corresponding network cir-
cuitry providing the synapse or threshold function. The storage
capacitor Csore furthermore couples to a second capacitor
Clhert for activation of the perturbation. Since the perturbation
can only take one of two values +o, it is locally represented
and processed in binary format. The binary perturbation is
generated locally, once at the beginning of every update
cycle, by means of a procedure described further below. The
perturbation bit ; selects either of two complementary signals

\

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 2, MARCH 1996

Vie and V_,, supplied globally to all learning cells, for
driving the coupling capacitor Cher. Vi i selected for m; =
1, and V_, is selected otherwise. With the specific shape of
the waveforms V., and V_, depicted in Fig. 6(b), the proper
sequence of perturbations activated onto the parameter is
established, for successive observations of the complementary
error terms in (5). In particular, both V., and V_, represent
the perturbation sequence 0, 7;, —m;, with-m; = 40 for V.,
and 7; = —o for V_,. Successive observations of the network -
error, synchronized with the three phases of the perturbation
sequence, yield estimates of the unperturbed error £(p) and
the complementary perturbed errors £(p + 7) and £(p — 7),
respectively. An estimate of the differential perturbed error s
then constructed externally by combining the obtained values
for &(p+n) and E(p—), in accordance with (5). By virtue of
the rigorous scheme used to activate the perturbations onto the
parameters, involving mainly binary selection operations at the
local implementation level, the perturbed error observations
and the corresponding estimate of & can be expected- of
reasonably high quality, provided the outcomes of the error
observations are systematic and consistent in the respective
parameter settings.

The obtained global value for & is then used, in conjunc-
tion with the local perturbation bit 7;, to locally update the
parameter value p; according to (4). For optimal learning
performance, the update increment in (4) is decomposed into
its amplitude and polarity components, each further being
processed and activated independently. The motivation for
separating both follows from accuracy considerations applying
to incremental update learning rules in general. While the
correct implementation of the polarity of the desired learning
increments is crucial to warrant proper convergence of the
"parameter values, the amplitudes of the implemented incre-
ments or decrements are allowed relative errors within certain
margins. Incidentally, formula (4) reveals that the increment
polarity can be obtained from a binary exclusive-or operation
on the polarities of the perturbed error £ and the perturbation
bit 7;, with the parameter value being decremented if both
polarities are equal, and incremented otherwise. Likewise, the
increment amplitude is given by the amplitude of é . The binary
operation to determine the increment polarity is implemented
virtnally error-free with simple digital CMOS circuitry. The
obtained value for the polarity then activates either of a given
analog increment or decrement, with amplitude proportional to
|€|, onto the parameter value. The analog device serving the
increments and decrements doeg not need to be excessively
precise, other than required to satisfy the desired increment
polarity. Requirements on relative accuracy of the increment
size, scaling with the amplitude, are therefore more stringent
than requirements on absolute, uniform accuracy:

A binary controlled charge pump, shown in the dashed-
line inset of Fig. 6(a), is used for this purpose, offering a
fine resolution of the charge increment amplitude ranging over
several decades [45]. The charge pump dumps either a positive
or-a negative update current, of equal amplitude, onto the

_ storage capacitor whenever it is activated by means of an

EN_UPD high pulse, effecting either of a given increment
or decrement on the parameter value p;, respectively. The

CAUWENBERGHS: ANALOG VLSI RECURRENT NEURAL NETWORK

141
I

353

I I I [I T I [I I [
Aos | ags | 1 g lap | eee lay | ag | | | l as | a
24|23' | | |18|17 I7| 6| q.l-_.‘——- 12 1
},‘ JI I ‘J J‘ T
|7 A A
Q [I [I I [[[f I I \ [
LR e L L Rl Kl el ek B

Fig. 7. Multichannel pseudorandom bit generation using linear feedback shift registers.

positive and negative currents of the device are supplied by
complementary MOS transistors MP and MN. The particular
transistor, supplying the current for either increment or decre-
ment action, is activated by driving its source voltage while
keeping its gate voltage fixed, thereby avoiding the typical
effects of switch injection noise and clock feed through affect-
ing switched capacitor implementations [41]. Both transistors
are biased in the subthreshold region [42], [11], allowing
exponential control of the current amplitude ranging down to
pA levels. Consequently, the charge pump device is able to
supply reliable increments and decrements of almost arbitrarily
small size, as needed in the final stages of the learning near
convergence. ,

The charge pump device interfaces with the storage capac-
itor Cstore t0 update the analog parameter p; according to the
supplied analog and binary signals defining the increment am-
plitude and polarity. The amplitude of the incremental update,
set proportionally to |<S' |, is controlled by the globally supplied
Vupp » and Vypp p bias levels onto the gates of MN and MP,
respectively. The polarity of the increment or decrement action
is determined by the control signal DECR/INCR, obtained
from an exclusive-or gate operating on the polarities of the
perturbed error & and the perturbation bit 7;. The learning
cycle is completed by activating the update with a high pulse
on EN_UPD. The next learning cycle then starts with a new
random bit value for the perturbation ;.

D. Local Generation of Random Perturbations

The random bit streams ;(*) are generated on-chip using
a variant on the well-known technique of obtaining pseu-
dorandom bit sequences by means of linear feedback shift
registers [43]. For optimal performance, the perturbations need
to satisfy certain statistical orthogonality conditions, and a
rigorous but elaborate method to generate a set of uncorrelated
bit streams in VLSI has been derived [44]. To preserve the
scalability of the learning architecture and the local nature
of the perturbations, we have chosen a simplified scheme

which drastically reduces the implementation complexity but
which does not aversely affect the learning performance to first
order, as verified experimentally. The array of perturbation
bits, configured in a 2-D arrangement given by the location of
the learning cells near the parameters in the network array, is
constructed by an outer-product exclusive-or operation from
two generating linear sets of uncorrelated row and column
bits, 7;# (j = 0---6) and ;¥ (i = 1---6), shown in
Fig. 1. In particular, the values of the perturbation bits are
obtained locally, inside the corresponding learning cells, by
means of exclusive-or gates whose inputs connect to the
locally intersecting horizontal and vertical bit lines. While
deterministic relationships exist among the constructed bit
values, statistically the obtained bits are mutually uncorrelated
with equal probabilities for both binary outcomes, provided the
generating row and column bits 7; ¥ and 7;"" are statistically
uncorrelated and unbiased as well.

The row and column bits themselves are obtained from
exclusive-or combinations of the parallel outputs of two
counter-propagating linear feedback shift registers, with
polynomial degrees 6 and 7, respectively, generating two
independent pseudorandom bit sequences in time and space.
The configuration of the two registers and- the linear array
of exclusive or-gates, combining the register outputs into
the row and column bits, is shown in Fig. 7. In principle,
the row and column bits could have been obtained from the
parallel outputs of one single feedback register only, without
the XOR operations, though such would imply correlations
between the bit values over time, as any two given taps
of the parallel output of a shift register represent the same
bit sequence merely displaced in time. Since the parallel
output bit sequences of the two registers generating the
row and column bits are mutually counterpropagating and
independent, propagation effects within the set of generated
bits are avoided. With polynomial degrees of 6 and 7 for the
two shift register bit sequences, the combination of the register
outputs delivers a periodicity of (26— 1) x (27 — 1) = 8,001
[43], which is appropriately long for the perturbative learning

l | Qe ® | I

o]
Z
g
T T
f

I

|

f

|

|

|

!

|

!

|
_

-

INCR/DECR

SEL -

Simplified schematic of the storage cell circuitry.

Fig. 8.

scheme. While longer random sequences could be obtained
by choosing higher degrees for the generating polynomials of
the registers, the choice was made in particular to allow for a
simple implementation of the linear feedback circuitry.

E. Long-Term Volatile Storage

After learning, it is desirable to retain the parameter settings
established onto the network. The volatile storage of the
parameter values on capacitors.undergoes a spontaneous decay
due to junction leakage and other drift phenomena, and needs
to be refreshed periodically. The implemented chip includes
local provisions for refreshing the parameters, using a local
analog memory technique which does not require external
storage of the parameters [45]. The parameter refresh is
performed in the background, and does not interfere with the
continuous-time network operation.

The implemented technique effectively quantizes a given
stored analog parameter value to one of a discrete set of
voltage levels, by repeatedly refreshing the analog value
toward the identified discrete level to counteract the drift
of the volatile storage medium. A typical scheme employed
for refresh consists of identifying the discrete level closest
to the stored analog parameter value, and then updating the
analog value by loading the identified discrete level onto the
storage- device [4], [9]. The refresh scheme used here [45]
is more robust to random errors, by specifying small fixed-
size increments in the parameter values in the direction of the
nearest discrete level, rather than completely substituting the
stored analog value with the identified level. In particular, the
incremental updates for partial refresh are constructed as

Cp Y =M -5 Q(p®) (3
with ¢ the increment amplitude, small compared with the sep-
aration between adjacent discrete levels, and where the binary
quantization value Q(p;*)) is obtained from the analog value
pi(k> in fairly consistent manner [45]. The binary quantization
function Q(.), indicated in Fig. 1, serves to determine the po-
larity of the direction toward the nearest discrete level, and can
be implemented in practice by extracting the least significant
bit (LSB) obtained from analog-to-digital conversion of the
analog value [45].) :

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 2, MARCH 1996

For practical reasons, the refresh circuitry implementing
the above analog memory technique is integrated with the
learning circuitry driving the parameter storage capacitor.
Incidentally, the charge pump used for the learning updates
can serve directly to supply the incremental updates in the
parameter values for partial refresh as well. To that purpose,
probing and multiplexing circuitry are added to the learning
cell of Fig. 6(a), activated in the refresh mode of operation
while the learning circuitry is disabled, to access the stored
parameter value for binary quantization and drive the charge
pump correspondingly. The simplified schematic of the refresh
circuitry, discarding the learning portion of the cell sharing the
same charge pump, is shown in Fig. 8. The actual binary quan-
tization of the stored analog values is performed sequentially
outside the array of cells, in a multiplexed arrarigement along
each of the columns in the array, illustrated in Fig. 1, to reduce
the complexity of implementation. Since the refresh rates
required for the volatile storage medium are rather modest,
typically in the 100 Hz range, a small set of binary quantizers,
one per column in the array, provides sufficient bandwidth to
accommodate multiplexing of a fairly large number of storage
cells. A binary SEL signal selects the particular row of cells
in the array to be refreshed at.a given time, connecting the
‘buffered stored value of a selected cell to the binary quantizer
on the corresponding column. A logic high pulse on the
EN_UPD line of the selected row finally establishes the partial
increments (8), activating the charge pumps of the selected
storage cells with polarity DECR/INCR given by the binary
quantization values of the corresponding columns.

The complete circuit-level schematic of the synaptic cell
Wi; used in the array of Fig. 1, including the local functions
of synaptic contribution, construction of the perturbations,
stochastic error-descent learning, and long-term - storage of
the volatile parameters, is given in Fig. 9. The layout of the
synapse cell, measuring 170 pm X 180 pm in 2 pm CMOS
technology, is depicted in Fig. 10. The reference synaptic cells
8;/Wog shown in the bottom row of Fig. 1, which supply
the value of the locally stored threshold parameter 4; to
all synapses on the same column while providing the Wog
synaptic contributions on the reference row, adapt a circuit
and layout structure almost identical to that of Figs. 9 and 10.

F. Global Supervision of Learning and Storage Functions-

Besides the local learning and storage functions, of which
the implementation was described in detail above, their co-
ordination and supervision requires some global functions,
which operate at a higher level surpassing the individual
structure of parameter cells in the array. The global functions
involve a dimensionality much smaller than that of the local
functions, such that a dedicated hardware implementation
tuned toward optimal efficiency is not needed. On the contrary,
the low-dimensional global functions can be implemented
on a general-purpose platform such as a micro-controller,
offering a wide spectrum of functionality which can be tuned
toward optimal performance at virtually no cost in hardware
efficiency. For the stochastic perturbative learning algorithm
in particular, the global functions operate on scalar variables

CAUWENBERGHS: ANALOG VLSI RECURRENT NEURAL NETWORK

355

Fig. 9. Complete schematic of the synapse cell including learning and storage functions.

relating to error observations on the network, evaluating
the network error under complementary perturbations, and
combining the two results to construct an estimate of the
differential perturbed error (5). Possible functional extensions
for increased performance, which can easily be incorporated
in a general-purpose implementation, include adaptive biasing
techniques for dynamically optimizing the learning rate, and
conditional tests on the range of unperturbed and perturbed er-
ror observations [or various combinations of all three observed
values £(p), £(p +), and £(p ~ «)] to guard and remedy
against potential instabilities in the updates.

In the present implementation, all global learning func-
tions are performed off-chip, by means of analog and digital
hardware interfacing with a general-purpose computer. The
evaluation of the error functional (2) on the network is
performed with discrete analog components, leaving some
flexibility to experiment with different formulations of error
functionals that otherwise would have been hardwired. A
mean absolute difference (v = 1) norm is used for the
metric distance, and the time-averaging of the error (3) is
achieved by a fourth-order Butterworth low-pass filter. The
cutoff frequency is adjusted to accommodate an AC ripple
smaller than 0.1%, giving rise to a filter settling time extending

20 periods of the training signal. Since three observations
of the error (2) on the network are needed to obtain the
unperturbed and complementary perturbed error estimates, a
single learning iteration spans at least 60 periods of the training
signal.

In principle, the refresh of the parameters does not require
higher-level global supervision at all, since the timing and
multiplexing of local update and binary quantization functions
can be coordinated by means of predefined cyclic control se-
quences, which can be generated on-chip driven by a periodic
clock signal. Such allows the refresh operations to run au-
tonomously in the background, transparent to the operation of
the network. In the present realization, the binary quantization
functions are not included on the chip circuitry and need
to be performed externally. The technology for integrating
A/D/A converters, implementing on-chip quantizers, has been
developed and demonstrated [46], and the main focus in the
experiment conducted here is to characterize the learning
performance of the network chip, to which the supporting
storage method is secondary. For simplicity of demonstration,
the parameters p; are stored externally once the learning is
completed, and thereafter refreshed sequentially by supplying
values for the quantization bits Q(p;(*)) as defined by the

356

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 2, MARCH 1996

Fig. 10. Physical layout of the synapse cell with integrated learning and storage functions.

polarity of the observed deviation between internally probed
p;*) and externally stored p; parameters values. External
storage and the generation of binary quantization values are
performed and controlled by the computer supervising the ex-
periment. The simplified refresh scheme with external storage
does not involve internal quantization feedback loops, and
therefore allows error-free operation at slower refresh rates.
The parameter refresh is performed in the background with a
100 ms cycle, whenever the learning process is disabled or
interrupted. :

IV. EXPERIMENTAL LEARNING RESULTS

As a proof of principle, the network is trained to generate
outputs following a circular target trajectory, in absence of
externally supplied inputs. The target output signals are defined
by the quadrature-phase oscillator

zF(t) = A cos(2rft)
)

a3 (t) =

with amplitude A = 0.8 V and frequency f = 1 kHz. In
principle, a recurrent network of two neurons suffices to gener-

A sin(27 ft)

ate quadrature-phase oscillations, and the extra neurons in the
network serve to accommodate the particular amplitude and
frequency requirements and assist in reducing the nonlinear
distortion. ‘

Training a recutrent neural network to exhibit prescribed
oscillatory behavior by means of error descent in the parameter
space is a harder problem than might be anticipated at first
thought. The shape of the error surface in parameter space,
defined by the time-averaged format of (2) or its equivalent
as implemented by low-pass filtering of (3), contains local
minima and abrupt discontinuities, which lead to unpredictable
learning results when the network is initialized arbitrarily.
This is because the asymptotic dynamics of recurrent neural
networks depend strongly on the parameter values, especially
in the neighborhood of the boundary regions between slightly
damped and slightly amplified small-signal dynamics of the
state variables, where infinitesimal small parameter changes
may trigger drastic transitions between a fixed point attractor
behavior, limit cycle oscillations, instability and multistability
in the dynamics [47]. Incidentally, we found that randomly
initialized learning sessions usually fail to generate oscillatory
behavior at convergence, the network being trapped in a

CAUWENBERGHS: ANALOG VLSI RECURRENT NEURAL NETWORK

p=256V1 i
c=125mV |

Output Error (V)

0.0
i 1 L 1 1
0 20 40 60 80 100
Time (sec)

Fig. 11. Recorded evolution of the error during learning, for four different
sessions on the network.

local minimum defined by a strong point attractor. Even
with strong teacher forcing, these local minima persist. The
sharp parameter dependence of the error functional, fueling
the convergence problems, can be mostly avoided by using
shorter integration time intervals for averaging of the etror
(2). matching -the characteristic time scale of the network
dynamics and training signal. Such requires a modified scheme
of coordinating the perturbations and error observations to
allow practical on-line implementation, which could not be
incorporated in the present experimental setup.

The convergence problems due to the ill-shaped structure
of the error functional can be circumvented through a rational
choice of the initial conditions. Clearly a particular choice
of initial conditions for the parameter values may artificially
convert a hard learning problem to a trivial one, and to warrant
meaningful results we have derived initial conditions based
on physical considerations generally valid for other trajectory
learning tasks on recurrent neural networks as well. We
obtained consistent and satisfactory results with the following
initialization of network parameters: strong positive diagonal
connection strengths W;; = 1, zero off-diagonal terms W;; =
0; i # j and zero thresholds §; = 0. The positive diagonal
connections W;; are needed to free the neuron state variables
from the point attractor at the origin, corresponding to the
spontaneous decay term —z; in (1). This allows the network
outputs to better follow the target signals under strong initial
teacher forcing, for fast and robust learning. The zero initial
values for the cross connections W;;, ¢ # j are required to
avoid any bias in the dynamics, due to coupling between
neurons, during the initial phase of the learning. Gradual
relaxation of the teacher forcing strength afterwards allows
to establish the desired coupling strengths needed to maintain
the neuron output waveforms closely near those of the target
signals.

Fig. 11 shows recorded error sequences under training of
the network with the target oscillator (9), for four different
sessions of 1500 learning iterations each starting from the
above initial conditions. The learning iterations span about
60 ms each, for a total of 100 s per session. The teacher

357

(@)

(b)

Fig. 12. Oscillograms of the target signals and network outputs with learning
suspended, (a) under weak teacher forcing and (b) without teacher forcing.
Top traces of each: 1 (¢) and &7 (t). Bottom traces: x2(t) and z7 (¢).

forcing amplitude) is set initially to V) = 3 V, and thereafter
decays logarithmically over one order of magnitude toward
the end of the sessions. Fixed values of the learning rate and
the perturbation amplitude are used throughout the sessions,
with ¢ = 25.6 V™! and 0 = 12.5 mV. All four sessions
show a rapid initial decrease in the error under stimulus of
the strong teacher forcing, and thereafter undergo a region of
persistent flat error slowly tapering off toward convergence
as the teacher forcing is gradually released. Notice that this

" flat region does not imply slow learning; instead the learning

constantly removes error as additional error is adiabatically
injected by the relaxation of the teacher forcing.

Near convergence, the bias in the network error due to
the residual teacher forcing becomes small. Fig. 12 shows
the network outputs and target signals at convergence, with
the learning suspended and the parameter refresh activated,
illustrating the minor effect of the residual teacher forcing

358

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 2, MARCH 1996

[y

Parameter Values (V)

-1

— W iandj=12 7]
— Wjjiiorj=3,..6

s Grj=12 1 1 1 I
»»»»» 6;j=3,..6

Parameter Values (V)

YT
amsuann

P et L L L Lltldehdd

40
Time (sec)

40
Time (sec)

Fig. 13. Recorded evolution of the network parameters during learning, for four different sessions on -the network.

signal on the network dynamics. The oscillogram of Fig. 12(a)
is obtained under a weak teacher forcing signal, and that of
Fig. 12(b) is obtained with the same network parameters but
with teacher forcing disabled. In both cases the oscilloscope
is triggered on-the network output signals. Obviously, in
absence of teacher forcing, the network does no longer run
synchronously with the target signal. The discrepancy in
frequency, amplitude, and shape between either of the free-
running and forced oscillatory output waveforms and the farget
signal waveforms, however, is evidently small.

It would have been instructive to observe the internal
dynamics of the network other than that of the two output
" neurons z; and 2. Unfortunately, the output voltages of
internal neurons x3 through z¢ are not accessible off-chip in
the present chip implementation, due to pin-out limitations.
Instead, we recorded the evolution of the complete set of
network parameters, which are accessible through the probing
and multiplexing circuitry supporting the binary quantization,
during each of the above four leaming sessions. The recorded
curves for the synapse and threshold parameters, sampled
every 50 learning update cycles, are shown separately for all
four sessions in Fig. 13. To ease interpretation, the parameter
curves relating to any of the four internal neurons are visually
distinguished from those pertaining exclusively to the two
output neurons. Both families of curves clearly display signif-

icant changes in the parameter values from the initial settings
during the learning sessions, which testifies that all neurons,
including the internal neurons, are actively engaged in training
the dynamics of the output neurons. The strong similarity
between sets of parameter curves across- different learning
sessions, shown in the four separate plots of Fig. 13, further
indicates that the involvement of the internal neurons during
learning is a systematic rather than a purely diffusive process,
whereby the complete spectrum of dynamics achievable by the
fully confignred network is explored to produce the. desired
output neuron waveforms.

Closer examination of the parameter values at convergence,
given in Table I, reveals that all four sessions actually re-
sult into approximately the same network, with the neurons
configured in a particular order. In principle, the outputs
of the network are invariant to topological interchanging of
internal neurons, with corresponding permutations of rows and
columns in the parameter matrix. Therefore, the learning task
contains multiple degenerate solutions, all of which should
equally likely be obtained under learning from the unbiased
initial values for the parameters. In practice, analog offsets and
mismatches in the implementation of the network break the
symmetry existing among the neurons, and introduce a bias in
the network dynamics at the initial parameter settings, favoring
a particular solution. The fact that the implemented system is

CAUWENBERGHS: ANALOG VLSI RECURRENT NEURAL NETWORK

359

) TABLE I
PARAMETER VALUES OBSERVED AT CONVERGENCE, FOR FOUR DIFFERENT SESSIONS ON THE NETWORK

Session 1 Session 2
j 1 2 3 4 5 6 i 1 2 3 4 5 6
Wi | 118 -021 061 -068 -1.17 1.06 W1 | 117 024 048 -069 -124 105
W2 | 044 180 047 079 186 -1.40 W2 | 040 180 034 -084 186 -145
W3 | 016 029 118 015 026 0.06 W3 | 005 037 126 013 0.17 0.04
W4 | 161 016 -004 045 -0.12 0.19 W4 | 140 011 026 073 000 006
Wsi | 068 033 146 183 184 030 Wsi | 069 019 156 182 1.85 040
- We | 027 142 025 123 -102 015 Wej | 021 143 028 131 -1.08 024
6j |-000 051 099 078 018 0.16 6j | 001 -047 078 066 016 009
Session 3 " Session 4
j 1 2 3 4 5 6 i 1 2 3 4 5 6
Wi | 121 -024 062 -0.66 -1.16 099 Wiy | 125 020 054 061 -1.06 106
W2 | 039 176 045 -090 186 -1.38 W2 [-049 179 047 -098 186 -142
W3 | 014 029 132 009 019 014 W3 | 005 021 124 032 015 017
W4 | 154 031 011 054 -037 008 W4 | 146 025 -016 070 -0.10 0.8
Wsi | 073 026 143 182 183 035 Wsi | 067 032 143 18 185 041
We | 021 141 029 119 -1.02 020 Wej | 020 144 021 131 -107 013
6j | 002 -046 -081 068 0.12 003 8 |-008 -057 -096 064 035 006
able to consistently regenerate the same network solution from TABLE I
different learning sessions, following more or less the same CHip FEATURES
trajectory in parameter space despite different instances for the
random perturbation values, illustrates the global deterministic Technology 2 pm p-well double-poly CMOS
. . Supply voltage +5V
error descent property of the stochastic scheme, resembling o
the characteristics of gradient descent on a macroscopic scale. Power dissipation
. total 12mW
More importantly, learning sessions on different fabricated
instances of the same chip design all consistently converged to Area
. . : . active die 2.2mm X 2.2 mm
network solutions of comparable quality, despite fairly large synapse cell 170 pm X 182 pm
differences in the parameter values obtained at convergence]
A . Transistor count
due to the randomness of the implementation errors. The total 3885
robustness of the implemented learning system to random synapse cell .56
offsets and nonlinearities induced at fabrication is a major Pin count £

advantage of the model-independent approach followed here,
using statistical techniques based on direct observations of the
error to obtain the gradient information needed for learning.

V. CONCLUSION

We implemented .and characterized an analog recurrent
neural network chip incorporating local provisions for on-line
learning of continuous-time dynamics. By employing a simple
stochastic perturbative algorithm for error descent learning, we
avoided the usual sensitivity of learning performance to model
errors in the network implementation, and were able to obtain
a modular and scalable VLSI architecture for the learning
functions, locally integrated with the array of network cells in
a 2-D. Through simple extensions on the circuit structure of the
learning cells, the local provisions for updating the parameters

during learning are furthermore used to refresh the volatile
parameter storage in the background, allowing for long-term
retention of the network information. The implemented net-
work and embedded learning and storage systems can be
directly expanded, without changing the internal structure of
the cells, to accommodate applications of recurrent dynamical
networks requiring larger dimensionality. Table II summarizes
system level features of the tested chips. The power dissipation
measures 1.2 mW under the conditions of the experiments,
both in learning and refresh mode. The chip micrograph is
shown in Fig. 14.

Experimental tests on the chip, trained with a circular
dynamic trajectory, confirmed the robustness of learning per-

360

Fig. 14. - Chip micrograph. Center: network array of synapse and neuron
cells. Bottom: multichannel random bit generator.

formance in the presence of analog offsets in the imple-
mentation due to imprecision in the fabrication. While the
time-averaged formulation of the functional used for error-
descent learning is known to cause convergence problems
due to local minima and discontinuities in the error surface,
consistently successful results were obtained using. strong
initial teacher forcing and unbiased initial settings for the
parameters. The network repeatedly succeeded to learn 1 kHz
quadrature-phase oscillatory waveforms in 1500 update cycles,
spanning 100 s total. A present limitation of the implemented
learning model is the requirement of periodicity on the input
and target signals during the learning process, which is needed
to allow a repetitive and consistent evaluation of the network
error for the parameter updates.

ACKNOWLEDGMENT

The author wishes to thank V. Pedroni, A. Yariv, and
others for helpful discussions and/or critical reading of the
manuscript. Fabrication of the CMOS chip was provided
through the DARPA/NSF MOSIS service. Tanner Research
assisted with microscope photographs of the chip.

REFERENCES

[1] J. Alspector, B. Gupta, and R. B. Allen, “Performance of a stochastic
learning microchip,” ‘in Advances in Neural Information Processing
Systems, vol. 1. San Mateo, CA: Morgan Kaufman, 1989, pp. 748-760.
E. Vittoz and X. Arreguit, “CMOS integration of Herault-Jutten cells
for separation of sources,” in Analog VLSI Implementation of Neural
Systems. Norwell, MA: Kluwer, 1989, pp. 57-83.

S. Bibyk and M. Ismail, “Issues in analog VLSI and MOS techniques for
neural computing,” in Analog VLSI Implementation of Neural Systems.
Norwell, MA: Kluwer, 1989, pp. 103-133.

[2]

(31

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 2, MARCH 1996

[4]

151

[61

7

{81

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

7

(181

{191
[20]

[21]

[22]

[23]

[241

[25]

[26]

[27]

[28]

[291

B. Hochet, V. Peiris, S. Abdot, and M. J. Declercq, “Implementation of a
learning Kohonen neuron based on a new multilevel storage technique,”
IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 262-267, 1991.

M. H. Cohen and A. G. Andreou, “Current-mode subthreshold MOS
implementation of the Jutten—Herault autoadaptive network,” IEEE J.
Solid-State Circuits, vol. 27, no. 5, pp. 714-727, 1992.

G. Cauwenberghs, C. F. Neugebaner, and A. Yariv, “Analysis and veri-
fication of an analog VLSI outer-product incremental learning system,”
IEEE Trans. Neural Networks, vol. 3, no. 3, pp. 488-497, 1992.

R. G. Benson and D. A. Kemns, “UV-activated conductances allow for
multiple time scale learning,” IEEE Trans. Neural Networks, vol. 4, no.
3, pp. 434440, 1993.

J. Donald and L. Akers, “An adaptive neural processor node,” IEEE
Trans. Neural Networks, vol. 4, no. 3, pp. 413-426, 1993.

B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez, and
J. L. Huertas, “A CMOS analog adaptive BAM with on-chip learning
and weight refreshing,” IEEE Trans. Neural Networks, vol. 4, no. 3, pp.
445-455, 1993. '

H. P. Graf and L. D. Jackel, “Analog electronic neural network circuits,”
IEEE Circuits Devices Mag., vol. 5, no. 4, pp. 4449, 1989.

C. A. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-
Wesley, 1989.

A. G. Andreou, K. A. Boaben, P. O. Pouliquen, A. Pavasovic, R. E.
Jenkins, and K. Strohbehn, “Current-mode subthreshold MOS circuits
for analog VLSI neural systems,” IEEE Trans. Neural Networks, vol. 2,
no. 2, pp. 205-213, 1991.

D. E. Rumelhart and J. L. McClelland, Eds., -Parallel Distributed
Processing, Explorations in the Microstructure of Cognition, vol. 1.
Cambridge, MA: MIT Press, 1986.

M. J. S. Smith, “An analog integrated neural network capable of learning
the Feigenbaum logistic map,” IEEE Trans Circuits Syst., vol. 37, no.
6, pp. 841-844, 1990.

R. C. Frye, E. A Rietman, and C. C. Wong, “Backpropagation learning
and nonidealities in analog neural network hardware,” IEEE Trans.
Neural Networks, vol. 2, no. 1, pp. 110-117, 1991.

M. Jabri and B. Flower, “Weight perturbation: An optimal architecture
and learning technique for analog VLSI feedforward and recurrent
multilayered networks,” {EEE Trans. Neural Networks, vol. 3, no. 1,
pp- 154-157, 1992.

K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Trans. Neural Networks,
vol. 1, no. 1, pp. 427, 1990.

R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Computa., vol. 1, no.
2, pp. 270-280, 1989. :

B. A. Pearlmutter, “Learning state-space trajectories in recurrent neural
networks,” Neural Computa., vol. 1, no. 2, pp. 263-269, 1989.

N. B. Toomarian and J. Barhen, “Learning a trajectory using adjoint
functions and teacher forcing,” Neural Networks, vol. 5, no. 3, pp.
473484, 1992. :)

J. Schmidhuber, “A fixed size storage O(n®) time complexity learning
algorithm for fully recurrent continually running networks,” Neural
Computa., vol. 4, no. 2, pp. 243-248, 1992.

G.-Z. Sun, H.-H. Chen, and Y.-C. Lee, “Green’s function method for fast
on-line learning algorithm of recurrent neural networks,” in Advances
in Neural Information Processing Systems, vol. 4. ' San Mateo, CA:
Morgan Kaufman, 1992, pp. 333-340.

P. Baldi, “Gradient descent learning algorithms: A general dynamical
systems perspective,” IEEE Trans. Neural Networks, vol. 6, no. 1, pp.
182195, Jan. 1995.

P. Mueller, J. Van Der Spiegel, D. Blackman, T. Chiu," T. Clare, C.
Dunham, T. P. Hsieh, and M. Loinez, “Design and fabrication of VLSI
components for a general purpose analog neural computer,” in Analog
VLSI Implementation of Neural Systems. Norwell, MA: Kluwer, 1989,
pp. 135-169.

G. Cauwenberghs, “A fast stochastic error-descent algorithm for super-
vised learning and optimization,” in Advances in Neural Information
Processing Systems, vol. 5. San Mateo, CA: Morgan Kaufman, 1993,
pp. 244-251.

H. Robins and S. Monro, “A stochastic approximation method,” Annals
Math Statist., vol. 22, pp. 400-407, 1951.

H. J. Kushner and D. S. Clark, Stochastic Approximation Methods for
Cconstrained and Unconstrained Systems. New York: Springer-Verlag,
1978.

M. A. Styblinski and T.-S. Tang, “Experiments in nonconvex optimiza-
tion: Stochastic approximation with function smoothing and simulated
annealing,” Neural Networks, vol. 3, no. 4, pp. 467483, 1990.

J. C. Spall, “Multivariate stochastic approximation using a simultaneous.

CAUWENBERGHS: ANALOG VLSI RECURRENT NEURAL NETWORK

(30]
31]

(32]
[33]
[34]

[35]
[36]
37]
[38]
{39]

(40}

perturbation gradient approximation,” IEEE Trans. Automat. Contr., vol.
37, no. 3, pp. 332-341, 1992.

A. Dembo and T. Kailath, “Model-free distributed learning,” IEFE
Trans. Neural Networks, vol. 1, no. 1, pp. 58-70, 1990.

D. Kirk, D. Kerns, K. Fleischer, and A. Barr, “Analog VLSI implementa-
tion of gradient descent,” in Advances in Neural Information Processing
Systems, vol. 5. San Mateo, CA: Morgan Kaufman, 1993, pp. 789-796.
J. Alspector, R. Meir, B. Yuhas, and A. Jayakumar, “A parallel gradient
descent method for learning in analog VLSI neural networks,” in Ad-
vances in Neural Information Processing Systems, vol. 5. San Mateo,
CA: Morgan Kaufman, 1993, pp. 836-844.

B. Flower and M. Jabri, “Summed weight neuron perturbation: An
O(n) improvement over weight perturbation,” in-Advances in Neural
Information Processing Systems, vol. 5. San Mateo, CA: Morgan
Kaufman, 1993, pp. 212-219.

G. Cauwenberghs, C. F. Neugebauer, A. Agranat, and A. Yariv, “Large
scale optoelectronic integration of asynchronous analog neural net-
works,” in Proc. Dig. Int. Neural Network Conf. (INNC-90 Paris), vol.
2, pp. 551-554, 1990.

S. Satyanarayana, Y. P. Tsividis, and H. P. Graf, “A reconfigurable
VLSI neural network,” IEEE J. Solid-State Circuits, vol. 27, no 1, pp.
67-81, 1992,

J. W. Fattaruso, S. Kiriaki, G. Warwar, and M. de Wit, “Self-calibration
techniques for a second-order multibit sigma-delta modulator,” in ISSCC
Tech. Dig., vol. 36, pp. 228-229, 1993.

E. Sickinger and W. Guggenbiihl, “A high-swing, high-impedance
MOS cascode circuit,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp.
289-298, 1990. .

Z. Czarnul, “Modification of the Banu-Tsividis continuous-time inte-
grator structure,” IEEE Trans. Circuits Syst., vol. CAS-33, no. 7, pp.
714-716, 1986.

L. Watts, D. A. Kerns, and R, F. Lyon, “Improved implementation of
the silicon cochlea,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp.
692-700, 1992. .

S. Satyanarayana, Y. P. Tsividis, and H. P. Graf, “Analogue neural
networks with distributed neurons,” Electron. Lett., vol. 25, no. 5, pp.
302-303, 1989.

[41)

[42]

[43}

S

[45]

[46]

[47]

361

B. Sheu and C. Hu, “Switched-induced error voltage on a switched
capacitor,” IEEE J. Solid-State Circuits, vol. SSC-19, no. 4, pp. 519-525,
1984.

E. Vittoz and J. Fellrath, “CMOS analog integrated circuits based on
weak inversion operation,” IEEE J. Solid-State Circuits, vol. SSC-12,
no. 3, pp. 224-231, 1977.

S. W. Golomb, Shift Register Sequences.
Day, 1967.

I. Alspector, J. W. Gannett, S. Haber, M. B. Parker, and R. Chu,
“A VLSI-efficient technique for generating multiple uncorrelated noise
sources and its application to stochastic neural networks,” IEEE Trans.
Circuits Syst., vol. 38, no. 1, pp. 109-123, 1991.

G. Cauwenberghs and A. Yariv, “Fault-tolerant dynamic multilevel
storage in analog VLSL” IEEE Trans. Circuits Syst. II vol. 41, no. 12,
pp. 827-829, 1994.

— ., “Method and apparatus for monotonic algorithmic digital-to-
analog and analog-to-digital conversion,” U.S. Patent 5 258 759, 1993.
P. Baldi, “Learning in dynamical systems: Gradient descent, random
descent, and modular approaches,” California Institute Technol., JPL
Tech. Rep., 1992.

San Francisco, CA: Holden-

Gert Cauwenberghs (5°89-M’92) received the en-
gineer’s degree in applied physics from the Vrije
Universiteit Brussel, Belgium, in 1988, and the M.S.
and Ph.D. degrees in electrical engineering from
the California Institute of Technology, Pasadena, in
1989 and 1994, respectively.

He joined Johns Hopkins University, Baltimore,
MD, in 1994 as an Assistant Professor in Electrical
and Computer Engineering. His research includes
VLSI systems and algorithms for parallel signal
processing and adaptive neural computation.

