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Abstract—Sound localization using energy-aware hardware
for sensor networks nodes is a problem with many applications
in surveillance and security. In this paper, we evaluate four
algorithms for sound localization using signals recorded in a
natural environment with an array of commercial off-the-shelf
microelectromechanical systems microphones and a specially
designed compact acoustic enclosure. We evaluate performance
of the algorithms and their hardware complexity which relates
directly to energy consumption.

Index Terms—Direction of arrival estimation, intelligent sensors,
networks.

I. INTRODUCTION

SOUND localization using compact sensor nodes deployed
in networks [1] has applications in security, surveillance,

and law enforcement [2]. Several groups have reported on co-
herent [3] and noncoherent [4] methods for sound localization,
detection, classification, and tracking in sensor networks [5].
Coherent methods are based on the arrival time differences
of the acoustic signal to the sensors [6]. In standard systems,
microphones are separated to maximize accuracy, therefore,
the nodes need to achieve synchronization to produce a valid
estimate [4]. The need of synchronization implies a frequent
communication which is expensive in terms of power con-
sumption. Noncoherent methods like closest point of approach
(CPA) [4] are not critical with respect to synchronization,
but are sensitive to sensor mismatch and differences in the
channels between the sound source and the sensors. The
methods discussed in this paper are all coherent approaches at

Manuscript received March 25, 2003; revised December 2, 2003. This work
was supported in part by the Defense Advanced Research Projects Agency/Of-
fice of Naval Research under Contract N00014-00-C-0315 and in part by
Intelligent and Noise-Robust Interfaces for Microelectromechanical Systems
Acoustic Sensors. The work of P. Julián, A. G. Andreou, and D. H. Goldberg
was supported by the National Science Foundation under Grant EIA-0130812.

P. Julián is with the Electrical and Computer Engineering Department, The
Johns Hopkins University, Baltimore, MD 21210 USA and also with Consejo
Nacional de Investigaciones Cientificas y Técnicas (CONICET), Capital Fed-
eral CP 1033, Argentina, on leave from the Dipartimento de Ingenieria Eléctrica
y Computadoras, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
(e-mail: pjulian@ieee.org).

A. G. Andreou, D. H. Goldberg, and G. Cauwenberghs are with the Electrical
and Computer Engineering Department, The Johns Hopkins University, Balti-
more, MD 21210 USA.

L. Riddle is with the Signal Systems Corporation, Annapolis, MD 21146
USA.

S. Shamma is with the Department of Electrical Engineering, University of
Maryland, College Park, MD 20742 USA.

Digital Object Identifier 10.1109/TCSI.2004.826205

Fig. 1. Photograph of ASU enclosure.

the node level, therefore eliminating the need for synchroniza-
tion. Indeed, one of the presented methods, the gradient flow
algorithm, is capable of bearing estimation with subwavelength
distances among sensors.

In the above-mentioned references, low-power commercial
off-the-shelf (COTS) hardware are employed. However, even
with low-power state-of-the-art hardware, COTS devices con-
sume power at the milliwatt level. While in some applications,
this is adequate, in truly autonomous nodes that harvest energy
from the environment (sun) the power dissipation must be re-
duced many orders of magnitude to the microwatt level. This
can only be attained by co-designing the algorithms with custom
mixed analog–digital hardware [7]–[9].

In this paper, we evaluate four different algorithms for bearing
estimation using signals recorded in a natural environment with
an array of four microelectromechanical systems (MEMS) mi-
crophones, embedded in a custom designed acoustic enclosure
(see Fig. 1). The algorithms are aimed towards a custom mixed
analog–digital integrated circuit implementations and the com-
plexity of the algorithm is related to the power dissipation in the
final system.

II. STATEMENT OF PROBLEM

A general array of four microphones as illustrated in Fig. 2,
pairwise separated by a distance , will be considered. The ob-
jective pursued is the estimation of the bearing angle, i.e., the
angle of the sound source with respect to either coordinate axis.
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Fig. 2. Microphones array to measure the bearing angle.

For example, referring to Fig. 2, if we are using the pair of mi-
crophones M1 and M3, then, the bearing angle will be given by

, whereas if the pair of microphones is M2 and M4, then the
bearing angle will be given by .

The study is based on a particular application that employs
an acoustic surveillance unit (ASU) enclosure (shown in Fig. 1)
with an array of four Knowles SiSonic MEMS microphones.
The distance between microphones is 6 cm; however, the
acoustic enclosure produces an effective separation between mi-
crophones 15.9 cm. In all cases, we are assuming that the
sound source is far away from the microphones . The
ASU enclosure also includes a signal conditioning circuitry con-
sisting of a low-pass filter and a gain stage. The original motiva-
tion for the study was to develop an algorithm able to localize a
broad-band signal in the frequency range 20 Hz 300 Hz with
an accuracy of one degree, using an estimation period of 1 s. In
order to evaluate different algorithms, signals were recorded in
a natural environment using a digital audio acquisition board at
2048 samples/s. In Section III, the different algorithms are in-
troduced while in Section IV, the details of the experiment and
the obtained results are described.

III. BEARING ESTIMATION ALGORITHMS

In this section, we summarize the four algorithms employed
to estimate the bearing of the sound source with respect to the
four microphones in the ASU. The algorithms are: 1) cross-cor-
relation algorithm (CA) [6] ; 2) cross-correlation derivative
algorithm (CDA); 3) spatial-gradient algorithm (SGA) [10];
4) stereausis algorithm (SA)[11].

All methods employ time-domain signal processing based on
coherent localization, with the particular feature that nodes are
spaced at subwavelength spacing. All methods are inspired by
biological information processing structures.

A. Cross-Correlation Algorithm (CA)

Bearing estimation using time-domain CAs has been exten-
sively studied in the literature (see [6] and [12]–[14]). A time-
domain CA is also used by many animals such as the barn owl
to provide azimuth information [15]. An analog very-large scale
integration (VLSI) implementation of the barn owl azimuth lo-
calization system was reported by Lazzaro and Mead [16].

Consider one pair of microphones with signals and
arriving at the two microphones given by

(1)

where is the signal emitted by the source, and
are uncorrelated noise signals, and is the time delay between
microphones. Under the assumption that the source is far away,
the signal arriving at the two microphones can be approximated
by a plane wave, and the following relation holds:

(2)

where 345 m/s is the speed of sound in air at ambient tem-
perature and is the maximum delay. The corre-
lation between signals and is given by

(3)

After replacing (1) into (3), and considering that and
are uncorrelated, (3) can be rewritten as

(4)

This function will exhibit a maximum at . Therefore,
one way to estimate the time delay is to generate (3) numerically
and calculate the time where the maximum is achieved.

In practice, the signal is sampled at a certain frequency
and the correlation is approximated using a discrete time

version

(5)

where is such that is the time window under con-
sideration. From now on, we will discard in the notation,
and instead we will use discrete instants indexed with an in-
teger. Operation (5) can be implemented in a digital fashion after
quantization of the signals. Using experimental data, we found
that a 1-bit quantization was sufficient to obtain accurate esti-
mations, as will be shown later. From a hardware perspective,
coding the signal with just 1 bit produces a dramatic reduction
in complexity. The resulting architecture consists of a number
of stages in the form of

(6)

where is an index to the stage number (see Fig. 3).
At this point, some practical considerations are in order. A

sampling frequency of 200 kHz is required (see Appendix) to
estimate the angle with an accuracy of one degree for angles in
the range . As the test signals were
sampled at 2048 Hz, for this particular case, it was necessary
to interpolate and resample the signals at 200 kHz. This choice
of sampling frequency implies that every discrete time delay is

s. As the maximum possible delay, that corresponds to
an angle is s, 92 stages are
necessary. Accordingly, index in (6) ranges from 0 to 91.
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Fig. 3. Estimation architecture for CA.

From a hardware viewpoint, the digital implementation of (6)
requires shift registers to generate the delayed versions of , a
counter implementing the correlation operation and one block to
determine where the maximum has occurred. Once the signal is
quantized with 1 bit, the information corresponding to the time
delay between both signals is encoded in the relative changes
of state from zero to one and one to zero. Accordingly, no in-
formation is contained in those parts of the signal where there
are no state changes. However, every stage (6) counts all the
time at the speed set by the clock, regardless of input values. As
the frequency of the clock is much higher than the frequency of
the signal, this architecture will dissipate more power than what
is actually necessary. This observation motivated the approach
presented in Sections III-B–D. Another point that must be con-
sidered in this approach is the need to calculate the occurrence
of the maximum of (6), which requires the implementation of
additional circuitry (a winner-takes-all circuit or an equivalent
digital circuit).

B. Cross-Correlation Derivative Algorithm (CDA)

As we said, the maximum of the correlation occurs when the
delay produced by the shift register chain coincides with the rel-
ative delay between signals. Mathematically, detecting the max-
imum of the correlation function is equivalent to detecting the
zero crossing of its derivative when the second derivative is neg-
ative. This has several advantages as we will show.

If we consider (6) and calculate the discrete difference be-
tween adjacent elements for every stage, we get

(7)

A careful observation of (7) reveals that it is in fact an
up/down (UP/DN) counter. The counter counts up when

and the other signal satisfies and
; it counts down when and the

other signal satisfies and .
Accordingly, the signals UP and DN commanding the counter
can be written as

(8)

Fig. 4. Estimation architecture for CDA.

In this case, the count is only updated when one of the two sig-
nals changes its state, and it is idle the rest of the time. This mode
of operation reduces the activity of the circuit and consequently
implies a reduced power consumption and also smaller counters.
In addition, to obtain the value of the delay, it is just necessary to
read the position of the stage where the zero crossing occurred.
Related to this, notice that all counters above the stage where the
coincidence occurs will have a count of a given sign, whereas
all counters below will have a count of the opposite sign. There-
fore, the zero crossing can be detected by connecting the sign
bit of every pair of adjacent blocks (7) to an XOR gate, in such
a way that it will become active when two adjacent cells have
a count of different sign (see Fig. 4). Then, if the XOR gates are
connected to encoders the position of the zero crossing is con-
verted to a binary number that gives the reading. Notice here
that the use of the derivative in the calculation of the correlation
eliminates the need to search for the maximum of the outputs,
and instead provides a straightforward architecture to read the
value of the delay.

A final observation regarding the number of maxima occur-
ring. In this application, we are relying on the fact that the min-
imum period of the signal 3.3 ms is larger than
the maximum delay, so that only one maximum will be notice-
able in the range of times considered, given by 460 s . An-
other assumption for this observation to be true is that only one
source of sound is present. The introduction of multiple sources
would give rise to several maxima (and minima).

C. Stereausis Approach (SA)

This approach is inspired in the stereausis network described
in [11] that uses two cochlea channels to preprocess the input
signals. In this case, every channel only reproduces the transfer
function of the basilar membrane (The model presented in [17]
also models the outer ear and fluid-cilia coupling stages). Fol-
lowing the work in [17] and [11], the output of every section of
basilar membrane is modeled with an infinite impulse response
(IIR) (bandpass) digital filter. The frequency responses (magni-
tude) of the 32 filters used are shown in Fig. 5. Analog VLSI
implementations of the basilar membrane as bank filters have
also been described in the literature [18].
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Fig. 5. Frequency response (in magnitude) of the stereausis network bandpass filters.

In the stereausis network, the sound from the left and right
microphones are fed to the ipsi-lateral and contra-lateral cochlea
channels, respectively. Then, all outputs are quantized to one
bit and the outputs of every stage of one channel are digitally
correlated with the outputs of the other channel. In this way, a
spatial arrangement of elements results, which can be associated
to an image, namely , whose element is the
correlation between the output of the th element of the ipsi-
lateral channel and the output of the th element of the contra-
lateral channel (see Fig. 6). When the left and right signals are
equal, the resulting image will have a significant density of
nonzero elements along the main diagonal. However, if there is
a delay in one of the signals, the image will show a shift of
the main diagonal toward one of the sides. This is illustrated in
Fig. 7, which shows the response of the network to a set of real
data where one of the inputs is delayed. The simulated network
consists of a 32-stage cochlea with cutoff frequencies between
252 and 618 Hz. Notice that as a delay of s is equivalent to a
phase shift of , the higher the frequency the more
noticeable the unbalance of the image with respect to the main
diagonal. Actually, the frequency range of the filter was adjusted
to maximize the detection sensitivity through simulations.1

The indication of time delay is calculated by measuring the
unbalance of image with respect to the main diagonal. This
is done by computing the difference between the sum of upper
diagonal elements and lower diagonal elements, i.e.,

(9)

1At first sight, it might seem surprising that the cutoff frequencies of the fil-
ters are higher than the signal bandwith. Regarding this, the reader should note
that every cochlea filter section is a bandpass filter with a very long tail. Accord-
ingly, the filter with the highest cutoff frequency (e.g., 618 Hz) still amplifies
the contribution of lower frequency signals.

Fig. 6. Estimation architecture for stereausis algorithm.

Fig. 7. Response of the stereausis network to two signals with a relative delay.

D. Spatial Gradients Approach (SPGA)

In this approach, the signals recorded by the microphones
are interpreted as samples of a field sound wave and the
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bearing angle is estimated using first-order derivatives [10]. This
algorithm, as opposed to the previous ones, takes full advantage
of the four microphones for the time delay estimation. For the
present situation let us consider the position of the microphones
with respect to the center of the array. We will assume that for
any given location in the plane, where , the magni-
tude represents the time delay between the wavefront of
the sound wave at and the wavefront of the sound wave at the
center of the array. Using this convention, we can express the
field , in a Taylor series around a
neighborhood of the origin

(10)

To first order, and after geometric considerations, it can easily
be seen that

(11)

where , are
the delays with respect to the coordinate axes. Then, a simple
manipulation of the variables leads to

(12)

If we sample the signals with a sampling time ,
and assume that can be adequately measured by fil-
tering , then, (12) is a standard least means-square (LMS)
problem and , can be obtained independently after col-
lecting samples as2

(13)

where

(14)

and .
This approach heavily relies on the accuracy of the signals

measurement, especially due to the need of an estimate of the
derivative. For this reason, even though in this case the signal is
sampled in time, its amplitude cannot be quantized. In practice,
the original signal was used with the original sampling rate of
2048 samples/s, and the derivative was calculated using finite

2Similar results can be obtained using adaptive algorithms.

Fig. 8. Testing setup showing location of ASU, speaker, and measured angles.

differences. The derivative is obtained using a one-step differ-
ence equation . As is well known,
this scheme might produce noise amplification at high frequen-
cies. In this particular case, high frequencies are filtered by the
anti-alias filter and by a high-order low-pass filter with cutoff
frequency at 300 Hz.3 As can be seen from Fig. 13 (shown later),
the amplitude of the signal is higher than the amplitude of the
noise in most of the spectrum of interest 0 Hz 800 Hz .
In the remaining part of the spectrum, both signal and noise are
negligible. Integration of signal and noise power in the full fre-
quency range 0 Hz 1024 Hz indicates that the signal-to-noise
ratio and . This observa-
tion agrees with the experimental results presented in [7]. Nev-
ertheless, it must be pointed out that this scheme could produce
noise amplification, for example, if noise conditions were dif-
ferent, or the signals were narrowband instead of broad-band,
or the sampling rate were higher (producing a greater band-
width). In these cases, more elaborate calculation schemes for
the derivative should be chosen [19].

IV. EXPERIMENTS AND NUMERICAL RESULTS

In order to design and test the different algorithms, experi-
mental data were collected in a field test in a public park in Sev-
erna Park, MD. The ASU was located in the center of a field,
and one 30.5-cm (12 in) subwoofer was placed 18.3 m away.
A Gaussian white noise signal was played through the speaker
and the signals received at the four microphones were recorded
using a sampling time of 2048 samples/s. For every angle, we
played 30 s of data and obtained 30 different readings of time
delay, corresponding to different estimations during a 1-s time
window. Two different sets of data were collected. One set of

3This is the result of a second-order low-pass filter plus the low-pass filter
action of the microphone itself.
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Fig. 9. Normalized mean value of the estimated time delay for the four
algorithms in the range [0 ; 180 ].

Fig. 10. Standard deviation in degrees for the four algorithms in the range
[0 ; 180 ].

data corresponding to angles in the range 0 180 in steps of
10 ; the other set of data corresponding to angles in the range

0 10 in steps of 1 (see Fig. 8). For every angle, we used
the mean to define the transfer curve time delay versus angle,
and the standard deviation to quantify the precision. The SNR
has an approximate mean value of 60 in the range of interest

20 Hz 300 Hz .
As shown in the Appendix, the time-delay variation corre-

sponding to a change of 1 at an angle is

(15)

However, in the present case, it is useful to quantify the error in
degrees. Accordingly, using (15), we can show that if the reading
of a certain time delay has a standard deviation of , then, the
standard deviation in degrees is given by

(16)

Fig. 11. Normalized mean value of the estimated time delay for the four
algorithms in the range [0 ; 10 ].

Fig. 12. Standard deviation in degrees for the four algorithms in the range
[0 ; 10 ].

TABLE I
ACCURACY OF ALGORITHMS (STD) IN DEGREES

Figs. 9 and 10 show the mean value (normalized with respect
to ) and standard deviation in degrees, resp., of the es-
timated time delay corresponding to the four algorithms in the
range . The asymmetric characteristics seen in Figs. 9
and 10 are mainly due to misalignment in the location of the
speaker with respect to the ASU. Figs. 11 and 12 show the mean
values and the standard deviation, resp., corresponding to the
four algorithms in the range . As can be appreciated
from Figs. 9 and 11, the CA and CDA give indistinguishable
results. Finally, Table I summarizes the average standard devia-
tion of the four algorithms in both ranges.
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Fig. 13. Spectral amplitude of recorded ambient noise and a recorded signal.

V. REMARKS ABOUT ACCURACY

A natural question in the present study is: what is the max-
imum accuracy that can be achieved in the estimation of the
time delay for a given recorded data? The answer is given by
the Cramér–Rao lower bound (CRLB) that gives a lower bound
for the variance of the time delay estimation as a function of the
signal and noise power spectra. The CRLB is given by (see [12])

(17)

where is the integration time, is the bandwidth of the signal,
and

(18)

is the so-called squared magnitude coherence (see [6]). Here,
and are the power-spectral density of sig-

nals , , and is the cross power-spectral density
of signals and . Using the relations between signals and
noise, we can rewrite (18) as

(19)

We will assume that the noise at both microphones have the
same power spectra distribution, i.e., ,
and that the signals received at both microphones also have the
same power spectra distribution, i.e., .
To calculate (18), we apply Welch’s averaged peri-
odogram method4 [20] to the measured data and obtain

and . Fig. 13 shows
and , where corresponds to an experi-

ment with ambient noise and no signal, and corresponds
to an experiment with both ambient noise and signal. After
noticing that , some algebraic manipulation
leads to the following expression for the CRLB as a function of
only measured variables

(20)

4The lenght of the signals is 2 . The fast Fourier transform length is 2 and
the Hanning window used has a length of 2 .

Fig. 14. CRLB in degrees as a function of the sound source position.

We calculated (20) using all the available data, con-
sidering that 1 s, 300 Hz, and we obtained a
mean value 1.66 s, with standard deviation

0.16 s and a maximum value 1.9 s.
We can translate this bound on the time-delay estimation accu-
racy into an equivalent bound on degree estimation accuracy by
using the relation (22) derived in the Appendix. Accordingly,
the minimum error in degrees as a function of the position of
the source is given by

s
(21)

This relation is plotted in Fig. 14 and shows that it is pos-
sible to achieve less than 1 error in the estimation. Actually, the
worst case error for all angles is 0.33 . This observation is due to
the fact that 0.33 is the maximum error in the range 0 45
135 180 , and the same applies to the range 45 135 con-

sidering the other pair of microphones. Therefore, if the two pair
of microphones are used in their best range, the bound for all an-
gles is 0.33 . The reader should notice that this is only a lower
bound, and algorithms will exhibit in general greater errors.

VI. CONCLUSION

We have compared four different algorithms for sound lo-
calization using MEMS microphones and signals recorded in
a natural environment. Two of the algorithms were previously
reported in the literature, and the other two were developed
specifically for this application. The SGA shows the best ac-
curacy results and its implementation requires a sampled data
analog architecture able to solve adaptively an LMS problem
[7]. The SA shows acceptable results but requires a two-dimen-
sional array of correlators in addition to the two cochlea filter
channels (a simplified approach has been implemented in [21]).
Finally, the CDA shows an accuracy very close to the SGA while
offering a very convenient architecture, evidenced not only by
its simplicity but also by the associated low temporal activity.
Experimental results of an integrated circuit in standard CMOS
technology that implements this approach can be found in [9].
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Fig. 15. Sampling time for a one degree discrimination as a function of the
angle. The arrows show the range of interest.

All presented methods constitute an alternative to applica-
tions in sensor networks where power consumption is restricted.
Moreover, they all implement coherent strategies at the sensor
level, eliminating the need for synchronization.

APPENDIX

DETERMINATION OF SAMPLING FREQUENCY

Let us consider a variation of the time delay (2) produced by
a variation of the angle around a given angle

(22)

Now, if we consider the time delay variation corresponding to a
variation of one degree, i.e., , we obtain

(23)

This formula basically tells us that to discriminate one
degree at an angle is equivalent to s. A plot
of versus the angle is shown in Fig. 15. It can
also be seen in this picture that a sampling frequency of

200 kHz permits to discriminate one degree for the
range of angles , or equivalently

. In practice, this is enough since
there is another pair of microphones in quadrature, so whenever
the angle is not in the range just mentioned, the algorithm can
use the other pair of microphones. In this way, the angle is
always in the appropriate range.
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