README ======================================================================= Incremental and decremental support vector machine learning Matlab code, data and demos G. Cauwenberghs gert@ucsd.edu ======================================================================= This directory contains Matlab code, data files, and example demos for incremental SVM classification, including exact leave-one-out (LOO) cross-validation. The file incremental.tar.gz contains the entire gzipped, tarred directory. To start, run test_2d or test_diabetes at the Matlab prompt. Make sure to have all *.m and *.mat files in your directory. Use the Matlab "help" function to find syntax and more information on the implemented functions. Some of the parameters are available as global variables in the workspace (see test*.m for examples). This software is in the public domain; there are no implied warranties of any kind! Send bug reports to gert@ucsd.edu Matlab functions and scripts: ----------------------------- svcm_*.m support vector classification machine kernel.m kernel function used in svcm_*.m test*.m example demo scripts Set*.m graphics formatting gen*.m data generating functions Matlab data: ------------ *.mat vectors x [L,N], and labels y [L,1] (-1 or 1) Sample output: -------------- *.eps encapsulated PostScript Reference: ---------- G. Cauwenberghs and T. Poggio, "Incremental and Decremental Support Vector Machine Learning," in Adv. Neural Information Processing Systems (NIPS*2000), Cambridge MA: MIT Press, vol. 13, 2001. (http://www.biology.ucsd.edu/~gert/papers/nips00_inc.pdf) Other incremental SVM code: --------------------------- SVM incremental on-line classification, LOO evaluation, and hyperparameter optimization (Chris Diehl): http://www.cpdiehl.org/incrementalSVM.html SVM incremental on-line regression (Francesco Parrella): http://onlinesvr.altervista.org/